II INTERNATIONAL BALTIC SYMPOSIUM ON APPLIED AND INDUSTRIAL MATHEMATICS

O. A. Finko, K. S. Meretukov (Krasnodar, KVVU). Systems of Boolean functions: numerical decomposition in \mathbb{Z}_m ring.

Binary Decision Diagrams (BDD) [1] are built on the basis of Shennon decomposition, positive and negative Davio decompositions [2]. These diagrams are widely used for representation and realization of Boolean functions (BF) — «Bit level» — $f(x_1, x_2, ..., x_n)$:

In [2] arithmetic BDD are considered for realization of BF systems — «Word level» — $F(x_1, x_2, \ldots, x_n)$. The lower circle of BDD based on the arithmetic Shennon decomposition, represents numerical values of the right column of the table of BF system validity; the lower circle of BDD based on the arithmetic positive Davio decomposition consists of coefficients from $\mathbb Z$ polynoms received by generalization of a numerical normal form:

In [3] modular forms of arithmetic polynomials are invented. Following [3] arithmetic decomposition BF systems —«Word level» — in the ring \mathbb{Z}_m ($\widehat{\oplus}$ — composition in \mathbb{Z}_m ; $\widehat{F} \in \mathbb{Z}_m$) are considered:

[©] Редакция журнала «ОПиПМ», 2016 г.

In some cases numerical decomposition of BF systems in the ring \mathbb{Z}_m , by analogy with modular polynomials from [3], makes it possible to reduce the temporary and/or spatial complexity of BF systems realization by supporting means for the asymmetric cryptoalgorithms (functioning in the ring \mathbb{Z}_m) and are applied to support implementers of symmetric cryptoalgorithms and other applications.

REFERENCES

- 1. Bryant R. E. Graph-based algorithms for Boolean functions manipulation. IEEE Trans. Comput., 1986, v. C-35, is. 8, p. 677–691.
- 2. Yanushkevich S. N., Miller D. M., Shmerko V. P., Stankovic R. S. Decision Diagram Techniques for Micro- and Nanoelectronic Design. Boca Raton, Fl.: CRC Press, 2006, 952 p.
- 3. Fin'ko O.A. Large systems of Boolean functions: realization by modular arithmetic methods. Autom. Remote Control, 2004, v. 65, is. 6, p. 871–892.