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A.V.Kalinkin, A.E.Kulzhanova (Moscow, Bauman Moscow
State Technical University). The probability of the extinction of branching process
with the scheme of interaction 27— 37; T — 0.

We consider a time-homogeneous Markov process £(t), t € [0,00), on the set of
states N = {0,1,2,...} with transition probabilities P;;(t) = P {£(¢) = j|£(0) = i}. Let
us suppose that the transition probabilities have the following form as ¢t — 0+, A1 >
0,2 >0,

P»;,ifl(t) = A\1it + O(t)7 P”(t) =1- ()\Q’L(Z — 1) =+ /\1i)t + O(t)7
P¢,i+1(t) = )\Qi(i - 1)t + O(t), P; (t) = O(t), jFi—14,i+ 1.

Let us introduce the generating functions of the transition probabilities Fi(t;s) =
> 520 Pij(t)s?, |s| < 1. The second (forward) system of Kolmogorov differential equations
for the transition probabilities of the process £(t) is equivalent to the partial differential
equation [2], [4], [5],
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+ (1 —s) Fi(0;5) = s".

We introduce an exponential generating function Gj(t;2) = 3.2 (2*/i!)P;;(t). The
first (backward) system of differential equations for the transition probabilities is equivalent
to the partial differential equation [2],
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The state 0 is absorbing. Introduce the probability of extinction g0 = limy 00 Pio(t),
i € N, and the generating function go(z) = > 0 ,(2"/i!)gio. One can show that go(z) =
lim; 00 Go(t;2) and that go(z) meets the first stationary equation

X22(go” (2) = 90 (2)) + M (1 = go(2)) = 0.

The solution of the equation has the form
go(z) = e + C/ Vali (2v/(A1/X2)z) e " du, D
0

where I;(x) is the Bessel function and C' is the constant. We used the boundary conditions
g0(0) =1, g5(0) =1 and go(z) is an entire function. The expansion of the expression (1)
in a series of powers z and further analysis leads to the following assertion.

Theorem [3]. The extinction probabilities of the branching process &(t) equal,

T(i—1,\/A2)

P> 9.
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Using the expansion of the incomplete gamma function I'(s — 1, A\1/A2) into a power
series (see [6], Chap. V, section C), we obtain the assertion.
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Corollary. The following representation is valid as i — oo,

(A /A2)"
RN I

For a branching process with pairwise interaction of particles, in which 2T — k2T ;

T — k1T, ko,k1=0,1,2,3,..., we have [4], [5] (for some suggestions of general form)

i

92 .
inNC'iTW i — 00,

where 0 < g2 < 1;here C >0 and « are constants (cf. two particular cases in [2]). In
the works [4], [5], authors have considered Laplace transform for the second Kolmogorov
equation. In the work [2], we considered stationary first equation.

For an ordinary branching process with independent particles T — kT, k=0,1,2,...

we have g0 =q°, i € N, where 0 < ¢ <1 (see [1], Chap.2, section 1).
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