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For δ ∈ (0, 1] by F2+δ denote a class of all distribution functions (d.f.’s) F (x)
satisfying the following conditions

∫ ∞

−∞
xdF (x) = 0,

∫ ∞

−∞
x2dF (x) = 1, β2+δ :=

∫ ∞

−∞
x2+δdF (x) <∞.

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random variables
with a d. f. F (x) = P(X1 < x), x ∈ R, from F2+δ . Denote

Sn = (X1 + ∙ ∙ ∙+Xn)/
√
n, Fn(x) = P(Sn < x), Φ(x) =

1
√
2π

∫ x

−∞
e−t

2/2 dt,

Δn = Δn(F ) =

∫ ∞

−∞
|Fn(x)− Φ(x)|dx, L

2+δ
n = L2+δn (F ) =

β2+δ

nδ/2
.

Following the ideas from [4], introduce the asymptotically the best, the exact, the lower
asymptotically the best, and the upper asymptotically the best constants:

C(δ) = sup
F∈F2+δ

lim
n→∞

Δn

L2+δn

, C0 = sup
n∈N

sup
F∈F2+δ

Δn

L2+δn

,

C(δ) = lim sup
l→0

lim sup
n→∞

sup
F∈F2+δ :L

2+δ
n =l

Δn

L2+δn

, C (δ) = lim sup
n→∞

sup
F∈F2+δ

Δn

L2+δn

,

respectively. From the definition it trivially follows that max{C,C} 6 C 6 C0 for every
δ ∈ (0, 1] .

For δ = 1 , in 1964 Zolotarev [6] found that C(1) = 1/2 . In 2009, independently,
Tyurin [5] and Goldstein [1] proved an estimate Δn 6 L3n , n > 1, yielding an upper bound
C0(1) 6 1 . Also, in the same paper [1] Goldstein improved a lower bound for C0 > C > 1/2
obtained by Zolotarev to C0 > 0.5353 .

In the following two theorem we prove two lower bounds for C0(δ) , δ ∈ (0, 1], in
terms of the C(δ) and C (δ).

Theorem 1. For every 0 6 δ 6 1

C(δ) > κ2+δ(1 + δ)
(1+δ)/2e−(1+δ)/2, (1)

where

κ2+δ =
cos θ∗δ − 1 + (θ

∗
δ )
2/2

(θ∗δ )
2+δ

= sup
x>0

cosx− 1 + x2/2
x2+δ

,
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θ∗δ being the unique root of the equation

δθ2

2
+ θ sin θ + (2 + δ)(cos θ − 1) = 0, 0 < θ < 2π.

The values of the lower bounds for C(δ) established by Theorem 1 are given in Table
1 below.

P r o o f. Let w ∈ (0, n) , s > 0, and the r.v. X1 take the values ±a with
probabilities γ1/2 and ±b with probabilities γ2/2 , where

γ1 =
w

n
, γ2 = 1−

w

n
, a = s

√
n, b =

√
1− ws2

1− w/n
.

Then we have EX1 = 0, EX
2
1 = 1,

β2+δ = E|X1|
2+δ = ws2+δnδ/2 + (1− ws2)

(
1− ws2

1− w/n

)δ/2
,

L2+δn = β2+δn
−δ/2 = ws2+δ +O

(
n−δ/2

)
, n→∞,

so that lim
w→0

lim
n→∞

L2+δn = 0. Thus the lim sup
`→0

which is taken after the lim sup
n→∞

in the

definition of C can be replaced by lim
w→0

. To estimate Δn from below we use the following

well-known representation of the mean metric in terms of ζ1 -metric:

Δn = ζ1(Fn,Φ) := sup
f

|Ef(Sn)− Ef(Z)| ,

where Z is a r.v. with the d.f. Φ , and the least upper bound is taken over all bounded
functions f : R→ R such that |f(x)− f(y)| 6 |x− y| for every x, y ∈ R.

Now take any t > 0 and fix ft(x) =
cos tx
t
. Since tEft(Sn) coincides with the

characteristic function of Sn , by independence of X1, . . . , Xn we have

Eft(Sn) =
1

t

(

E cos
tX1√
n

)n
=
1

t

(
w

n
cos(ts) +

(
1−
w

n

)
cos

(

t

√
1− ws2

n− w

))n
=

= t−1 exp
{
w
(
cos(ts)− 1 +

t2s2

2

)
−
t2

2
+ o(1)

}
, n→∞.

Observing that Eft(Z) = t
−1e−t

2/2 , we arrive at the conclusion that for every fixed
s, t, w > 0 as n→∞

ζ1(Fn,Φ) > |Eft(Sn)− Eft(Z)| −→ t
−1e−t

2/2
∣
∣
∣ew(cos(st)−1+s

2t2/2) − 1
∣
∣
∣ >

> t−1w
(
cos(st)− 1 +

s2t2

2

)
e−t

2/2,

and hence,

C(δ) >
(cos(st)− 1 + s2t2

2
)e−t

2/2

ts2+δ
. (2)

Using a result of [2] we observe that (2) can be rewritten as (1).

Theorem 2. For every 0 < δ 6 1

C (δ) > sup
λ>0
λ(δ−1)/2

(∫ −
√
λ

−∞
Φ(x)dx+

∞∑

k=0

∫ k+1

k

∣
∣
∣
∣

k∑

m=0

λm

m!
e−λ − Φ

(x− λ
√
λ

)∣∣
∣
∣dx

)

. (1)



XXXIII International Seminar on Stability Problems for Stochastic Models 3

The proof is based of the infinite divisibility of the Poisson distribution and results
of [3].

The values of the lower bounds for C (δ) established by Theorem 2 are given in Table
below.

Table. The values of the lower bounds for C(δ) and C (δ) from Theorems 1 and 2.

δ C(δ) > C (δ) >
0.1 0.2535 0.7053

0.2 0.2139 0.6080

0.3 0.1820 0.5349

0.4 0.1561 0.4775

0.5 0.1349 0.4314

0.6 0.1175 0.3948

0.7 0.1031 0.3669

0.8 0.0912 0.3473

0.9 0.0812 0.3335

1.0 0.0729 0.3249
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