ОБОЗРЕНИЕ ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ 3 МАТЕМАТИКИ Вып

Выпуск 2

2016

II INTERNATIONAL BALTIC SYMPOSIUM ON APPLIED AND INDUSTRIAL MATHEMATICS

A. V. Il' in (Moscow, Lomonosov Moscow State University (MSU)). Invertibility of dynamical systems using higher-order sliding modes.

In this contribution we investigate the problem of invertibility of linear time-invariant continuous dynamical systems i.e., the problem is to reconstruct the unknown input of a system using the measured output.

The main aim of this work is to solve the problem on the basis of stabilization methods with the use of higher-order sliding modes, which permits one to construct continuous controls u(t) without additional filtering.

Consider the linear time-invariant dynamical system

$$\dot{x} = Ax + b\xi, \qquad y = cx,\tag{1}$$

where $x(t) \in \mathbf{R}^n$ is the unknown state vector of the system, $y(t) \in \mathbf{R}$ is the measured output, and $\xi(t) \in \mathbf{R}$ is the unknown input of the system; A, b, and c are known constant matrices.

We also require that the estimate of a continuous signal $\xi(t)$ should be continuous. We use controlled model of system (1) in the form

$$\dot{\widetilde{x}} = A\widetilde{x} + bu, \qquad \widetilde{y} = cx,$$

where the control u(t) is aimed at the null stabilization of the system for the deviations $e(t) = \tilde{x}(t) - x(t)$ with measurable output $\varepsilon(t) = \tilde{y}(t) - y(t)$; this system has the form

$$\dot{e} = A + b(u - \tilde{\xi}), \qquad \varepsilon = ce.$$

We assume that system (1) satisfies the following conditions.

Condition 1. System (1) is controllable and observable, i.e., is in general position.

Condition 2. The function $\xi(t) \in \Omega^1\{|\xi(t)| \leq \xi^0, |\dot{\xi}(t)| \leq \xi^1\}.$

Condition 3. The invariant zeros of system (1) are in C_{-} .

Condition 4. The system (1) has the first relative order, i.e., the condition $cb \neq 0$ is satisfied.

The system (1) can be reduced by a nonsingular transformation to a form in which the null dynamics is separated, then the observer would be represented as

$$\begin{cases}
\dot{x}_{1} = x_{2}, \\
\vdots \\
\dot{x}_{n-1} = -\beta_{1}x_{1} - \dots - \beta_{n-1}x_{n-1} + y, \\
\dot{y} = -\overline{a}_{1}x_{1} - \dots - \overline{a}_{n-1}x_{n-1} - \overline{a}_{n}y + \xi(t).
\end{cases}$$
(2)

© Редакция журнала «ОПиПМ», 2016 г.

Том 23

Then the observer has the form

$$\begin{cases}
\dot{\tilde{x}}_1 = \tilde{x}_2, \\
\vdots \\
\dot{\tilde{x}}_{n-2} = \tilde{x}_{n-1}, \\
\dot{\tilde{x}}_{n-1} = -\beta_1 \tilde{x}_1 - \dots - \beta_{n-1} \tilde{x}_{n-1} + y.
\end{cases}$$
(3)

Consider the controlled model for the last equation of system (2),

$$\widetilde{y} = -\overline{a}_1 \widetilde{x}_1 - \dots - \overline{a}_{n-1} \widetilde{x}_{n-1} - \overline{a}_n y + u$$

To stabilize the error $\varepsilon(t) = \tilde{y}(t) - y(t)$, one can use various methods of stabilization of systems under uncertainty. In particular, it was suggested in [1–3] to stabilize system (3) by the discontinuous control, we use a second-order sliding mode

$$u = u_1 + u_2,$$

$$u_1 = \begin{cases} -u_1, & \text{if } |u_1| > \mu, \\ -\alpha_1 \operatorname{sgn}(\varepsilon(t)), & \text{if } |u_1| \le \mu, \end{cases}$$

$$u_2 = -\lambda |\varepsilon|^{\rho} \operatorname{sgn}(\varepsilon(t)),$$
(4)

where $\alpha_1 > \xi^1, \ \mu > \xi^0, \ \lambda > 0, \ \rho \in (0;1).$

By virtue of the continuity of u(t), the control itself can be used to estimate the unknown signal $\varepsilon(t)$; the estimation error (in the case of an ideal sliding mode) converges exponentially to zero, and the convergence rate is determined by the convergence rate of the observer (2).

Theorem. Let Conditions 1–4 be satisfied for system (1). Then the observer (3) and the control u(t) in (4) provide the asymptotic estimate $\tilde{\xi}(t) = u(t)$ for the unknown input signal $\xi(t)$, starting from some time.

REFERENCES

- 1. Il'in A. V., Korovin S. K., Fomichev V. V. Methods of Robust Inversion of Dynamical Systems. Moscow: Fizmatlit, 2009. (In Russian.)
- Emel'yanov S. V., Korovin S. K., Levantovskii L. V. Higher-Order Sliding Modes in Control Systems. In.: Nonlinear Dynamical Systems: Qualitative Analysis and Control. Collected Volume. Is. 2. Moscow: Inst. Syst. Anal., 1993, p. 39–70. (In Russian.)
- 3. Vasin D. A., Il'in A. V., Fomichev V. V. Inversion of dynamical systems with the use of higher-order sliding modes. Differential Equations, 2014, v. 50, № 11, p. 1466–1471.