ОБОЗРЕНИЕ ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ

Том 23

МАТЕМАТИКИ

Выпуск 2

2016

A. S. Fursov (Moscow, Lomonosov Moscow State University (MSU)). Stabilization of a switched linear systems under the coordinate and parametric uncertainties.

Key words: switched system, feedback, stabilization, control system, variable structure controller, sliding mode, linear matrix inequalities, simultaneous stabilization.

Consider switched linear system with scalar input and defined by the state equation

$$\dot{x} = (A_{\sigma} + \Delta A_{\sigma})x + b_{\sigma}(u+f), \quad \sigma \in S.$$
(1)

where $\sigma(t)$, $\sigma : \mathbf{R}_+ \to I = \{1, 2, \dots, m\}$ is a piecewise constant function with a finite number of discontinuities in any finite interval, S — set of such functions, called switching laws or switching signals; $x \in \mathbf{R}^n$ — state vector, $u \in \mathbf{R}$ — scalar control input; $\{A_\sigma \in$ $\mathbf{R}^{n \times n}$: $\sigma \in S$ } — family of piecewise constant matrices, A_{σ} : $\mathbf{R}_{+} \to \{A_{1}, A_{2}, \dots, A_{m}\}$; analogically, $\{b_{\sigma} \in \mathbf{R}^n : \sigma \in S\}$ — family of piecewise constant vectors, $b_{\sigma} : \mathbf{R}_+ \to$ $\{b^1, \ldots, b^m\}$; $\{\Delta A_{\sigma} \in \mathbf{R}^{n \times n} : \sigma \in S\}$ — family of piecewise constant matrices describing parametric uncertainty of mathematical model of the switched system, ΔA_{σ} : $\mathbf{R}_{+} \rightarrow$ $\{\Delta A_1, \Delta A_2, \dots, \Delta A_m\}, \Delta A_i = b^j p^j$, where p^j $(j = 1, 2, \dots, m)$ are unknown stationary row vectors; f(t) — limited external scalar continuous coordinate disturbance. Assume that relative to the vectors p^{j} and function f(t) the estimates

$$|p^{j}|| \leq p_{0}(j = 1, 2, ..., m), \quad |f(t)| \leq f_{0}, \quad t \geq 0$$

are known.

Assumption 1. rank $[b_1 \dots b_m] = 1$ and $b_2 = \lambda_2 b_1$, $b_3 = \lambda_3 b_1$, \dots , $b_m = \lambda_m b_1$, where $\lambda_j > 0 \ (j = 2, ..., m).$

Problem statement. For the switched linear system (1) is required to build a stabilizing controller in the form of a discontinuous state feedback

$$u(x) = \left\{egin{array}{ccc} u^+(x), & ext{if} &
ho(x) > 0, \ u^-(x), & ext{if} &
ho(x) < 0 \end{array}
ight.$$

 $(\rho(x) = cx, c \in \mathbf{R}^{1 \times n}, u^+(x), u^-(x)$ — continuous functions to choose), which 1) generates in a closed system

$$\dot{x} = (A_{\sigma} + \Delta A_{\sigma})x + b_{\sigma}(u(x) + f(t))$$
⁽²⁾

sliding motion on the surface $\rho(x) = 0$;

2) guarantees entering the trajectory of the system (2) to the surface $\rho(x) = 0$ from any point of the phase space;

3) ensures the exponential stability of the sliding motion of the system (2) on the surface $\rho(x) = 0$.

© Редакция журнала «ОПиПМ», 2016 г.

The equation of the sliding movement (if it exists) along the surface $\rho(x) = 0$ for a closed system (2) can be obtained using the equivalent control method. In accordance with this method, the sliding motion is given by the system of differential equations

$$\dot{z} = P_{\sigma} z, \quad z \in \mathbf{R}^{n-1},\tag{3}$$

where P_{σ} — matrix formed by the first (n-1) crows and columns of the matrix

$$Q_{\sigma} = M^{-1} \left(I - \frac{1}{c^{\top} b_{\sigma}} b_{\sigma} c^{\top} \right) A_{\sigma} M_{\tau}$$

where M — some non-singular transformation matrix.

Theorem. Suppose switched system (1) satisfies assumption 1 and there exists a hyperplane $\rho = 0$ ($\rho = cx$), along which the exponential stability of the sliding movement (3) is provided. Then there are coefficients k_i (i = 0, ..., n) such that the variable structure controller

$$u = -\sum_{i=1}^{n-1} k_i |\mathbf{x}_i| \operatorname{sgn} \rho - k_n \rho - k_0 \operatorname{sgn} \rho,$$

is stabilizing for the system (1).

The question of the existence of the vector $c = (c_1, \ldots, c_n)$ reduces to the question of the existence of solutions of linear matrix inequalities, prepared in accordance with known parameters of the original switched system (1), and the coefficients k_i are calculated in accordance with the methods of the theory of simultaneous stabilization [4].

REFERENCES

- 1. Fursov A.S., Khusainov E.F. On the stabilization of switchable linear systems. Differential Equations 2015, v. 51, is. 11, p. 1518–1528.
- Hespanha J. P. Uniform stability of switched linear systems: extensions of LaSalle's Invariance Principle. — Automatic Control, IEEE Transactions, 2004, v. 49, № 4, p. 470– 482.
- 3. Liberzon D., Morse A. S. Basic problems in stability and design of switched systems. IEEE Control Systems, 1999, v. 19, № 5, p. 59–70.
- Emel'yanov S. V., Fomichev V. V., Fursov A. S. Simultaneous stabilization of linear dynamic plants by the variable-structure controller. — Automation and Remote Control, 2012, v. 73, is. 7, p. 1126–1133.