XXXIII INTERNATIONAL SEMINAR ON STABILITY PROBLEMS FOR STOCHASTIC MODELS

I. V. Zolotukhin¹⁾ (St. Petersburg, P. P. Shirshov Institute of Oceanology RAS, St. Petersburg Department). Discrete analogue of Marshall–Olkin multivariate exponential distribution.

Let $\mathcal{E} = \{\varepsilon\}$ is the set of k-dimensional indices $\varepsilon = (\varepsilon^{(1)}, \varepsilon^{(2)}, \dots, \varepsilon^{(k)})$, each coordinate of which is equal to 0 or 1, and \mathcal{E}_i is the set of indices for which $\varepsilon^{(i)} = 1$.

Let N_{ε} are the independent geometrically distributed random variables:

$$\mathbf{P}\{N_{\boldsymbol{\varepsilon}}=n\}=p_{\boldsymbol{\varepsilon}} q_{\boldsymbol{\varepsilon}}^{n-1}, \quad n=1,2,\ldots, \quad p_{\boldsymbol{\varepsilon}}=1-q_{\boldsymbol{\varepsilon}}$$

with the characteristic functions

$$\varphi_{\varepsilon}(t) = \frac{p_{\varepsilon} e^{it}}{1 - q_{\varepsilon} e^{it}}$$

The class of these distributions will be denoted by $G(q_{\varepsilon})$.

Let's take into consideration the random variables

$$M_i = \min_{\boldsymbol{\varepsilon} \in \mathcal{E}_i} \{N_{\boldsymbol{\varepsilon}}\}, \quad i = 1, 2, \dots, k$$

Let $N_{\varepsilon} = \infty$ if $p_{\varepsilon} = 0$.

Definition. Distribution of the vector

$$\mathbf{M} = (M_1, M_2, \dots, M_k) = (\min_{\boldsymbol{\varepsilon} \in \mathcal{E}_1} \{N_{\boldsymbol{\varepsilon}}\}, \min_{\boldsymbol{\varepsilon} \in \mathcal{E}_2} \{N_{\boldsymbol{\varepsilon}}\}, \dots, \min_{\boldsymbol{\varepsilon} \in \mathcal{E}_k} \{N_{\boldsymbol{\varepsilon}}\})$$

is called *multivariate geometric distribution*, and the vector \mathbf{M} is called *geometrically distributed random vector*.

Notation. Let us denote $MVG(q_{\varepsilon}, \varepsilon \in \mathcal{E})$ the class of multivariate geometric distributions.

In what follows the vector $\boldsymbol{\varepsilon}$ will be used for the indication of the coordinate hyperplane in the *k*-dimensional space, $\mathbf{0} = (0, 0, \dots, 0), \ \mathbf{1} = (1, 1, \dots, 1), \ \boldsymbol{\varepsilon} = \mathbf{1} - \boldsymbol{\varepsilon}, \ \boldsymbol{\varepsilon}_1 \lor \boldsymbol{\varepsilon}_2$ is the vector, each *i*th coordinate is $\max\{\varepsilon_1^{(i)}, \varepsilon_2^{(i)}\}$.

Define the partial order \leq on the set \mathcal{E} by the rule:

$$(\forall \boldsymbol{\varepsilon}, \boldsymbol{\delta} \in \boldsymbol{\mathcal{E}}) \quad \boldsymbol{\delta} \leqslant \boldsymbol{\varepsilon}, \text{ if } (\forall j \in \{1, 2, \dots, k\} \quad \boldsymbol{\delta}^{(j)} \leqslant \boldsymbol{\varepsilon}^{(j)}$$

Let $\mathbf{m} = (m_1, m_2, \dots, m_k)$, m_j are the natural numbers, $\boldsymbol{\varepsilon}\mathbf{m}$ will mean their coordinate-wise product. Denotation (\mathbf{a}, \mathbf{b}) means the scalar product of vectors $\mathbf{a} \ \boldsymbol{\mu} \ \mathbf{b}$.

Theorem 1. The projection $\varepsilon \mathbf{M}$ of the vector \mathbf{M} on the coordinate hyperplane ε has a multivariate geometric distribution with the reliability function

$$\overline{P}(\boldsymbol{\varepsilon}\mathbf{m}) = \prod_{\boldsymbol{\delta} \leqslant \boldsymbol{\varepsilon}} \left(\prod_{\boldsymbol{\gamma}: \boldsymbol{\gamma} \boldsymbol{\varepsilon} = \boldsymbol{\delta}} q_{\boldsymbol{\gamma}}\right)^{\max_{1 \leqslant i \leqslant k} \boldsymbol{\delta}\mathbf{m}}$$

Theorem 2. The characteristic function of the multivariate geometric distribution is

$$\psi(\mathbf{t}) = \mathbf{E} e^{i(\mathbf{t},\mathbf{M})} = \frac{e^{i(\mathbf{t},\mathbf{1})}}{1 - e^{i(\mathbf{t},\mathbf{1})} \prod_{\delta \in \mathcal{E}} q_{\delta}} \sum_{j=1}^{k} \sum_{\substack{\delta_l \in \mathcal{E} \\ l=1,2,\dots,j}} \prod_{l=1}^{j} p_{\delta_l} \prod_{\substack{\gamma \neq \delta_l \\ l=1,2,\dots,j}} q_{\gamma} \psi\bigg(\overline{\bigvee_{l=1}^{j} \delta_l \mathbf{t}}\bigg).$$

© Редакция журнала «ОПиПМ», 2016 г.

¹⁾ e-mail: igor.zolotukhin@gmail.com

The summation in the second sum is carried over all values of δ_l , differing among themselves.

Theorem 3. The characteristic function of the projection of vector \mathbf{M} on hyperplane ε has the form

$$\psi(\mathbf{\varepsilon t}) = \mathbf{E} \, e^{\,i\,(\mathbf{t},\mathbf{\varepsilon}\,\mathbf{M})} = rac{e^{\,i\,(\mathbf{t},\mathbf{\varepsilon})}}{1 - e^{\,i\,(\mathbf{t},\mathbf{\varepsilon})}\,\prod_{\boldsymbol{\delta}:\boldsymbol{\delta}\,\mathbf{\varepsilon}>\mathbf{0}}q\boldsymbol{\delta}}\,\sum_{j=1}^k I_{j,\mathbf{\varepsilon}},$$

where

$$I_{j,\varepsilon} = \sum_{\substack{\boldsymbol{\delta}_l: \boldsymbol{\delta}_l \in > \mathbf{0} \\ l=1,2,\ldots,j}} \prod_{l=1}^j p_{\boldsymbol{\delta}_l} \prod_{\substack{\boldsymbol{\gamma}: \boldsymbol{\gamma} \in > \mathbf{0} \\ \boldsymbol{\gamma} \neq \boldsymbol{\delta}_l \\ l=1,2,\ldots,j}} q_{\boldsymbol{\gamma}} \psi \left(\bigvee_{l=1}^j \boldsymbol{\delta}_l \varepsilon \mathbf{t} \right), \quad \mathbf{t} = (t_1, t_2, \ldots, t_k).$$

Theorem 4. Let $\mathbf{M} \in MVG(q_{\varepsilon}, \varepsilon \in \mathcal{E})$ and $p_{\varepsilon} = \lambda_{\varepsilon}p$, then $p \mathbf{M} \xrightarrow{\mathcal{D}} \mathbf{V}$, where **V** has the Marshall-Olkin multivariate exponential distribution.

REFERENCES

Marshall A. W., Olkin I. A. Multivariate exponential distribution. — J. Amer. Statist. Assoc., 1967, v 62, N_{0} 317, p. 30–44.