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Let n, d be two positive integers. The generalized de Bruijn digraph ([1, 2]) have
vertices, labeled by integers modulo n. The vertex i is adjacent to vertices di+r(modn),
0 6 i 6 n− 1, 0 6 r 6 d− 1. G(n, d) is regular of degree d and have nd arcs. Digraph
G(dt, d) is classical d-ary de Bruijn graph of degree t, t = 1, 2, . . . .

Let’s consider a nearest-neighbor random walk on G(n, d). It starts from a randomly
chosen vertex and steps along arcs into one of the neighboring vertices. This random
walk can be associated with a sequence of independent and identically distributed random
numbers modulo d. Let pr denote the probability of the step from vertex i to vertex
di+ r(modn),

∑d−1
r=0 pr = 1, 0 < pr < 1.

Given a random walk, the important question is to determine the stationary
distribution, which intuitively is the state that is reached after taking many steps in the
random walk. Some problems connected with the random walks on the classical de Bruijn
graphs are studied, e. g., in [3, 4] ( pr = 1/d case) and [5, 6] (general pr case).

Theorem. Let n = sdt, t > 0, GCD(s, d) = 1. For 0 6 q 6 n − 1 let br(q) be
the number of occurrences “ r ” in the list of the base d digits in the integer qmod (dt).
Stationary distribution of random walk on G(n, d) is:

P (q) =
1

s

d−1∏

r=0

pbr(q)r , 0 6 q 6 n− 1.

Corollary. If GCD(n, d) = 1, then stationary distribution is uniform and does not
depend on variables {pr, 0 6 r < d} :

P (q) =
1

n
, 0 6 q 6 n− 1.
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