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Methods of evaluation of traffic intensity play a very important role in the development
of complex information systems as they enable to detect insufficient or excess computing
resources on the basis of respective models. For queueing systems with batch arrivals traffic
intensity may be modeled by an autoregressive relationship between batch sizes.

Systems with autoregressive parameters are considered in many studies on queueing
theory. Let us mention the papers [1] and [2], which study a queueing system with discrete
time, where batch sizes exhibit autoregressive relation.

Following the paper [3], we consider a single-server queueing system with batch Pois-
son arrival process with intensity a. Suppose that the system has infinite capacity, and
service time has a distribution B(x) with density b(x) and Laplace transform β(s) of
this density. Incoming batches can have sizes 1, 2, . . . ,M with the corresponding probabil-
ities h1, h2, . . . , hM . Moreover, the size of the nth batch either equals the size of (n−1)st
batch with probability 06 p < 1, or is an independent random variable with probability
1−p.

Let’s define the following stochastic processes:
L(t) — queue length at time t;
X(t) — elapsed time from the start of service of the customer being served at t;
N(t) — size of the latest batch arrived before t.
Let

P (n, k, x, t) =
∂

∂x
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L(t)=n, N(t)=k, X(t)<x
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P (n, k, t) = P
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and
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π0(k, s) =

∫ ∞

0

e−s tP (0, k, t) dt

for |z |61, Re(s)>0.
The following theorem gives a formula to determine the queue length distribution at

an arbitrary moment.
Theorem. Function π(z, k, x, s) for |z |< 1, k = 1, 2, . . . ,M, x> 0, Re(s)> 0 is

determined by the expression

π(z, k, x, s) =
(
1−B(x)

) M∑
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where

Cn(z, s) =
1

1− β (s+a−λ̃n(z))/z

∏M
i=1

(
λ̃n(z)− p a zi

)

∏M
j=1
j 6=n

(
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)
M∑

m=1

bm(z, s)

λ̃n(z)− p a zm
,

bm(z, s) = −(s+a)π0(m, s) + hm +

[

p π0(m, s) a z
m + (1−p)
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n=1

π0(n, s)hm a z
m
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,

parameters λ̃1(z), λ̃2(z), . . . , λ̃M (z) are determined from the equation

M∏

i=1

(p a zi − λ̃) +
M∑

i=1

(1−p)hia z
i
M∏

j=1
j 6=i

(p a zj − λ̃) = 0,

and π0(1, s), π0(2, s), . . . , π0(M, s) — from the system

M∑

m=1

M∏

j=1
j 6=m

(
λ̃n(zn)−p a z

j
n

) (
− (s+a)π0(m, s) + hm + λ̃n(zn)π0(m, s)

)
= 0,

where zn = zn(s) is the solution of the functional equation zn = β (s+a−λ̃n(zn)).
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