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Statistical properties of the number of runs are widely used to check and control
properties of discrete random sequences (see [1] and the bibliography ibid). Distributions
(including multidimensional) of numbers of runs in the sequences of independent random
variables are studied in detail (see [1]). The properties of the random variables in
Markov sequences and in sequences of m -dependent random variables are also particularly
considered (see [1], [2]). Investigation of properties of the number of runs in a sequence
controlled by Markov chain is of big practical importance. This sequence can be considered
as a hidden Markov chain (see [3]).

Let Z = (Z0, Z1, Z2, . . . , ZT , . . .) be homogeneous aperiodical irreducible Markov
chain (see [4]) with state set EM = {1, 2, . . . ,M} and probabilities

πk(i) = P{Zi = k}, π
(m)
kl = P{Zt+m = l|Zt = k}, k, l ∈ EM .

M probability distributions {p(j)a }, a ∈ AN , j = 1, 2, . . . ,M, are defined over the set
AN = {1, 2, . . . , N}.

We consider the sequence of random variables X0, X1, . . . , XT , . . . taking values in

the set AN with probabilities P{Xj = k} = p
(Zj)

k , k ∈ AN , j ∈ N.
Let νat = I{Xt−1 6= a, Xt = ∙ ∙ ∙ = Xt+s−1 = a} be the indicator of random event

which means that run of a’s of length at least s ( s > 1 ) begins at moment t ( a-run for
brevity), ςas =

∑T−s+1
t=1 νat be the number of a-runs with length at least s in the sequence

X0, . . . , XT .

The mean of random variable ςas is defined by formula Eς
a
s = Eλ

a
s(Z), where

λas(Z) = E(ς
a
s |Z) =

T−s+1∑

t=1

(1− p
(Zt−1)
a )

t+s−1∏

j=t

p
(Zj)
a .

Lemma. Let T, s→∞. Then

E ςas = λ
a
s

(
1 +O ((T − s)−1)

)
, (1)

where

λas = (T − s+ 1)
∑

k0,...,ks∈EM

(1− p(k0)a )π̃a

s∏

j=1

p
(kj)
a πkj−1kj .

R e m a r k 1. If the initial and stationary distributions of Markov chain are equal
then formula (1) has the form Eςas = λ

a
s .

Now we turn to the problem of behavior of the distribution of random variable ςas
then M is fixed and T, s → ∞. We will use the notation L(X) for the distribution law
of the random variable X, Pois(μ) for the Poisson distribution with parameter μ and
ρ
TV

for total variation distance.
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Theorem. Let numbers M,N be fixed, T, s→∞, a ∈ AN — any fixed character.
Then

ρ
TV
(L(ςas ),Pois (λ

a
s)) = O (s(p

∗
a)
s) ,

where p∗a = max16j6M p
(j)
a .

Corollary. Let conditions of theorem be hold, λas → λ̃
a > 0. Then ςas

d
−→ Pois(λ̃a).

R e m a r k 2. It is also possible to prove that for given subset of characters A ⊂ AN
and given set of numbers sa, a ∈ A, random variables ςasa , a ∈ A, are asymptotically
independent and have in the limit Poisson distributions under some additional conditions.

R e m a r k 3. We used local Chen–Stein method to prove theorem (see. [5], [6]).
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