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In [1], we presented an approximate algorithm solving finite non-cooperative three-
person games in mixed strategies. The latter method is based on an iterative search for a
global minimum of the Nash function, where each iteration consists of solving three linear
programming problems. In this talk, we deal with the algorithm’s efficiency and testing
procedures (also, cf. [2]).

Consider a finite non-cooperative three-person game Γ of the following structure.
Assume that player l, l=1, 2, 3, governs nl strategies, and a table (a

(l)
ijk) determines its

payoff whenever the players select strategies i (16 i6n1), j (16j6n2), and k (16k6n3),
respectively. Since the game Γ is finite the set of Nash points X∗ is non-empty even though
not necessarily convex. We do not suppose [1] any convex structure for the game Γ.

The finite three-person game Γ in the mixed strategies is determined by the players’
payoff functions

fl(x) = fl(x1, x2, x3) =

n1∑

i=1

n2∑

j=1

n3∑

k=1

a
(l)
ijkx1ix2jx3k, l = 1, 2, 3,

defined over the compact subset X = X(1)×X(2)×X(3) of the Euclidean space En1+n2+n3 ,
where X(l) = {xl = (xl1, xl2 . . . , xlnl) ∈ E

nl :
∑nl
r=1 xlr = 1, xlr > 0, r = 1, 2, . . . , nl},

l = 1, 2, 3.
It turns out that solving the game Γ is tantamount to the search of the global min-

imum (zero) of the standard Nash function F (x1, x2, x3) =
∑3
l=1 δl(x), x ∈ X, where

δl(x) = maxxl∈X(l) fl(x)− fl(x), l = 1, 2, 3.
Although the minimization of the function F (x) by x ∈ X is an extremely com-

plicated task (mainly due to its numerous local minima distinct from the global one), the
problem of minimization of this function along a strategy vector of only one player (with
the strategies of the other two players being fixed) is easily reduced to a linear program.
Indeed, having fixed an arbitrary pair of strategy vectors, say, x′2 ∈ X

(2), x′3 ∈ X
(3),

we find an optimal solution x∗1 of the following linear programming problem denoted as
P1(x′2, x

′
3) :

n1∑

i=1

(

−
n2∑

j=1

n3∑

k=1

3∑

l=1

a
(l)
ijkx

′
2jx

′
3k

)

x1i + α
(1)
1 + α

(1)
2 → min,

n1∑

i=1

( n2∑

j=1

a
(3)
ijkx

′
2j

)

x1i 6 α
(1)
1 , k = 1, 2, . . . , n3,

n1∑

i=1

( n3∑

k=1

a
(2)
ijkx

′
3k

)

x1i 6 α
(1)
2 , j = 1, 2, . . . , n2,

n1∑

i=1

x1i = 1, x1i > 0, i = 1, 2, . . . , n1, α
(1)
1 , α

(1)
2 ∈ E

1.
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As a consequence, the inequality F (x∗1, x
′
2, x

′
3) 6 F (x

′
1, x

′
2, x

′
3) holds for any strategy

x′1 ∈ X
(1). Similarly, having fixed the values of the other feasible pairs of strategy vec-

tors (x′1, x
′
3) ∈ X

(1) × X(3) and (x′1, x
′
2) ∈ X

(1) × X(2), we detect the optimal solutions
x∗2 and x

∗
3 for the corresponding linear programs P2(x

′
1, x

′
3) and P3(x

′
1, x

′
2). In the same

manner, one has the inequalities F (x′1, x
∗
2, x

′
3) 6 F (x

′
1, x

′
2, x

′
3) holding for an arbitrary

strategy x′2 ∈ X
(2), and F (x′1, x

′
2, x

∗
3) 6 F (x

′
1, x

′
2, x

′
3) for any x

′
3 ∈ X

(3), respectively.
Further, we are going to generate the sequences of the strategy pairs for which the Nash

function is monotone non-increasing. In the developed algorithm, we start with the pure
strategy pairs. For example, starting with an arbitrary pure strategy pair h = (x02, x

0
3) ∈

X(2) ×X(3), we generate the following sequence of the triples xt = (xt1, x
t
2, x

t
3), t > 1 :

xt+11 — solves program P1(xt2, x
t
3),

xt+12 — solves program P2(xt+11 , x
t
3),

xt+13 — solves program P3(xt+11 , x
t+1
2 ),

t = 0, 1, 2, . . .

By the analogous procedures, one can construct the corresponding sequences starting from
two remaining pure strategy pairs. It is obvious that 0 6 F (xt+1) 6 F (xt) for all t >
1, therefore, there exists a limit q(h) = limt→∞ F (x

t) > 0. As an approximate value
q̃(h), here we accept (just as in [1]) the value of F (xt(h)), where t(h) = min{t > 0 :
F (xt)−F (xt−1) 6 εF }, and εF is a small fixed positive tolerance parameter (for example,
10−8 ). In [2], we also introduced a maximum allowed number of iterations (triples of linear
programs) T, that is, we set q̃(h) = F (xT ) whenever the corresponding estimate is broken
for all t 6 T.

In [1], we define an approximate value of game as q̃(H) = minh∈H q̃(h), where H is
the set of all starting pure strategy pairs, hence |H| = n2n3+n1n3+n1n2. Both in [2] and
here, instead of the exhausting search over all starting pairs, we tested the algorithm by
solving the following problem. Based on the (ordered) set of starting strategy pairs H we
look for a strategy x ∈ X, for which the stopping rule N(x) 6 ε holds, where ε is a small
fixed tolerance parameter, say, 10−6, while N(x) is a modified (normed) Nash function
(MNF) of the form N(x) = max16l63{δl(x)/fl(x)}, x ∈ X.

We have tested the algorithm with the aid of the code trimatrix.exe developed by the
authors in the language FORTRAN. The code has been translated with the Compaq Visual
Fortran compiler. The body of trimatrix.exe assembled/linked in the MS Visual Studio 6.0
environment. The procedure linprog (authored by U. Malkov) is exercised as the linear
programming solver. To justify their comparison, all the results provided below have been
obtained on the same personal computer with a processor Intel(R)Core(TM)i7CPU920/2,67
GHz and the 6,00 GB memory. All the data is stored in the operative memory.

The algorithm has been tested on a family of 3-person games comprising 6 series of dif-
ferent dimensions defined by the tabular parameters n1 = n2 = n3 = n ∈ {10, 20, . . . , 60}.
For each series, P = 10 games were randomly generated. For every game, the 3-dimensional
tables were generated in two steps. First, the numbers a

(1)
ijk, a

(2)
ijk, and a

(3)
ijk were randomly

generated as independent random variables distributed uniformly in the interval [0, 1]. After
that, the following transformation was applied:

a
(l)
ijk = 1 + a

(l)
ijk −

κ
2

3∑

r=1
r 6=l

a
(r)
ijk, l = 1, 2, 3, i, j, k ∈ {1, 2, . . . , n}.

Here, κ is the the mutual correlation coefficient among the generated tables, 0 6 κ 6 1.
Therefore, the tabular entries are running within the interval (1 − κ, 2).

First, the algorithm was tested on independent tables with κ = 0, and its efficiency
has proved to be rather high.
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Table 1 shows the testing results performed by the algorithm for the four nonzero
values of the correlation parameter κ. Here, for each series of games, the following notation
is used: k0 is the number of games boasting at least one pure strategy solution (such a
solution can be detected easily enough even without making use of the tested method);
Π+ denotes the set of games solved under the given tolerance, k+ is the number of such
games, i. e., k+ = |Π+|; Π− is the set of games on which the algorithm failed having
started with all 3n2 initial pure strategy pairs, k− denotes the number of those failures,
that is, k− = |Π−|; hence k0 + k+ + k− = P = 10.

For the game series with k+ > 0, the following additional notation is used: sp equals
the number of starting strategy pairs, and τp is the running time (in seconds) needed to
solve game p, with tpg denoting the number of iterations conducted to solve the game
with the starting pair g ∈ {1, 2, . . . , sp}. Therefore, the summary number and the maximal
numbers of iterations (linear programming triples P1, P2, P3 ) constitute tp =

∑sp
g=1 tpg

and tp = max16g6sp tpg, respectively. Calculate S
+ =

∑
p∈Π+ sp and the following

quantities for Table 1:

s+max = max
p∈Π+

sp, s
+
av =

S+

k+
, t+max = max

p∈Π+
tp, t

+
av =

1

S+

∑

p∈Π+

tp, T
+
sum =

∑

p∈Π+

τp.

For the series with k− > 0, the analogous notation was introduced: here, sp is the
number of starting strategy pairs (equaling S = 3n2 ) used by the algorithm in order to
conclude that game p hasn’t been solved; the total number of linear programming triples
P1, P2, P3 solved equals tp; the total running time needed for that is τp seconds; the
record (minimum) Nash function N(x) value found is np, and the record value of the
sum of the violated mutual complementarity conditions [2] is denoted by Δ. In the same
manner, we find tp =

∑sp
g=1 tpg and hence determine tp = max16g6sp tpg in order to

calculate the following quantities for Table 1:

t−max = max
p∈Π−

tp, t
−
av =

1

k− S

∑

p∈Π−

tp, T
−
sum =

∑

p∈Π−

τp,

N−min = μ min
p∈Π−

np, N
−
max = μ max

p∈Π−
np, N

−
av =

μ

k−

∑

p∈Π−

np,

Δ−min = min
p∈Π−

Δp, Δ
−
max = max

p∈Π−
Δp, Tsum = T

+
sum + T

−
sum.

Here, μ = 1/ε = 106 is the norming factor: μnp 6 1 means that game p has been solved
with the given tolerance. Otherwise, the value of μnp demonstrates how much the record
value Np of the modified Nash function (MNF) is higher than the desired tolerance value
of 10−6.

The main result of our testing procedures is the following conclusion: the proposed
algorithm is quite efficient for independent or slightly dependent payoff tables. However,
the higher the mutual correlation coefficient value for the tables, the lower the proposed
method’s reliability.
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