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Limit theorem for number of ones in extended Pohl generator outcome se-
quence.

We consider the generator consisted of r cyclic shift registers without feedback with
coprime lengths m1, . . . ,mr under residue ring modulo 2. Let (x
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),
j = 1, 2, . . . , r, be the vectors of registers cells fillings. Elements of generator outcome
sequence are formed by the formula
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where f is a Boolean function of r variables and t(m) = t mod m.
If f(y1, y2, . . . , yr) = y1⊕y2⊕ . . .⊕yr, where ⊕ is the operation of addition modulo 2

(XOR), the generator was considered in [1] and is called Pohl generator. The generator of
the form (1) with arbitrary Boolean function f essentially depending on its all r arguments
we designate as extended Pohl generator.

The generator outcome sequence is purely periodical and has the period (possibly not
minimal) of length L = m1m2 ∙ ∙ ∙mr. So when the properties of the number of ones is
investigated we consider the segment (z0, z1, . . . , zL−1), which is called cycle of outcome
sequence.

Let ξ be the number of ones in the cycle of outcome sequence of generator (1). We
use the notations Wf (u), u ∈ {0, 1}r, for Walsh–Hadamard transform of function f in
point u and wt(f) for weight of function f (see [2]). Let u(j) ∈ {0, 1}

r be the vector in
which the j th element is one and the remaining elements are zeros.

Theorem. Let extended Pohl generator with coprime registers lengths m1 < ∙ ∙ ∙ < mr
be given by Boolean function f, the numbers x

(j)
k , k = 0, 1, . . . ,mj − 1, j = 1, 2, . . . , r,

be random, mutually independent and uniformly distributed on the set {0, 1}.
If m1,m2, . . . ,mr →∞ in such a way that
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then the random variable
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has standard normal limiting distribution.

Remark 1. If m1/mj → ρ2j ∈ [0, 1], j = 1, 2, . . . , r, conclusion of the theorem
equivalent to the statement that the random variable
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has (in limit) normal distribution with zero mean and variance

1

4
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(
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)2
> 0.

Remark 2. It can be shown that if conditions of the theorem are fulfilled for function
f, then these conditions are also fulfilled for function f ⊕ 1.

Remark 3. Asymptotic properties of the distribution of the number of ones in out-
come sequence of ordinary Pohl generator are significantly different from those which are
described above. The conditions of our theorem can not be fulfilled for ordinary Pohl gener-
ator with equiprobable registers fillings. In this case ξ (under appropriate standardization)
has the limiting distribution which is equal to the distribution of the product of r inde-
pendent standard normally distributed random variables (see [3]). In [4] it was shown that
normal distribution is a limiting distribution for ξ when Pohl generator registers are filled
with segments of un-equiprobable Bernoulli sequence.
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