## **OP&PM SURVEYS** ON APPLIED AND INDUSTRIAL Volume 25 MATHEMATICS Issue 1

## 2018

## III INTERNATIONAL BALTIC SYMPOSIUM ON APPLIED AND INDUSTRIAL MATHEMATICS

A.L. Talis, A.L. Rabinovich (Moscow, INEOS RAS; Petrozavodsk, IB KarRC RAS). Hyperbolic tetrahedral honeycomb, symmetry of the Klein quartic and the hidden (non-crystallographic) symmetry of components of natural phospholipids.

Hydrocarbon components of natural phospholipids are linear chains; they can be approximated by chains of identical regular tetrahedra (which allow obtaining tetracoordinate structures). To reveal the "hidden" symmetry of such chain molecules in 3-dimensional Euclidean space  $E^3$ , an important role can be played by the symmetry of their analogs in 3-dimensional Riemannian spaces: according to [1, p. 99], there is an osculating Euclidean space to the given Riemannian space along the length of a given line. Let us consider the case of the space  $H^3$  of constant negative curvature, tesselated by ideal tetrahedra; these are hyperbolic honeycomb  $\{3, 3, 6\}$ , each edge of which has 6 ideal hyperbolic tetrahedra [2, 3]. It is necessary to reveal the maximal basic structural unit, which is the join of face-sharing regular tetrahedra, and the number of vertices of which does not change under mapping from  $H^3$  to  $E^3$ . Such a unit can not keep more than 5 tetrahedra because it's impossible to combine 6 regular tetrahedra at one edge in  $E^3$ . There are only 8 finitevolume universal regular hyperbolic tetrahedral tesselations [2], and the desired unit must have the ability of embedding to each of them. The only compromise option is the 7-vertex linear join of 4 face-sharing regular tetrahedra, the tetrablock.

According to [4], the "right-hand" join  $M(T_{2+\zeta})$  containing 28 hyperbolic tetrahedra (where  $T_{2+\zeta}$  is the 7-vertex triangulation of a torus,

$$\zeta = \frac{1+\sqrt{-3}}{2}, \quad (2+\zeta)(2+\overline{\zeta}) = 7$$

[2]) is embedded in the honeycomb  $\{3,3,6\}$ . It has a symmetry group PSL(2,7) of order 168, and is one of the above mentioned 8 finite-volume universal regular hyperbolic tetrahedral tesselations. It is shown that there is a possibility to obtain the  $M(T_{2+\ell})$ tesselation as 7 quadruples of hyperbolic tetrahedra (which correspond to tetrablocks), and all the sets considered in [4] can be defined by decompositions into the adjacent classes of group  $PSL(2,7) \equiv {}^7O$ , — that is the Klein quartic symmetry group, namely

$${}^{7}O = \bigcup_{i=1}^{56} g_{i}C_{3} = \bigcup_{n=1}^{28} g_{n}D_{3} = \bigcup_{j=1}^{24} g_{j}C_{7} = \bigcup_{k=1}^{8} g_{k}M_{3,7} = \bigcup_{m=1}^{7} g_{m}O' = \bigcup_{f=1}^{4} C_{2}g_{f}O',$$

where  $C_3$  and  $C_7$  are the symmetry groups of the triangle and the heptagon,  $C_3 \subset D_3$ ,  $D_3$  is dihedral group,  $M_{3,7}$  is the direct product of  $C_3$  and  $C_7$ , the subgroups O' and O''(the "left-hand" join  $M(T_{2+\overline{\zeta}})$  of the 28 tetrahedra corresponds to the above decompositions of <sup>7</sup>O with the group O'') are not conjugated in <sup>7</sup>O and coincide with the rotation group of the cube,  $C_2$  is the symmetry group of the "right-hand" tetrablock,

$$g_i \notin C_3, \quad g_n \notin D_3, \quad g_j \notin C_7, \quad g_k \notin M_{3,7}, \quad g_m, g_f \notin O'.$$

© Редакция журнала «ОПиПМ», 2018 г.

The numbers of cosets 56, 24, 8, 7 are determined by the fact that in the Klein quartic [2, 4] (that is defined as the tesselation of a sphere with 3 handles into 24 regular hyperbolic heptagons) 3 heptagons meet at each of the 56 vertices belonging to 7 cubes. When the centers of all 24 heptagons are joined, then 56 equilateral hyperbolic triangles are formed, each of degree 7 meeting at 24 vertices. Each of the 8 cyclic subgroups  $C_7$  ("axes"  $C_7$ ) of the group <sup>7</sup>O fixes a certain triple of heptagons. The amphichiral tetrablock also exists, it is determined by the decomposition of

$$\operatorname{PGL}(2,7) \equiv {}^{7}O_{h} = \bigcup_{n=1}^{4} C_{2v}g_{n}O_{h},$$

where  $O_h$  is the point group of cube,  $C_2 \subset C_{2v}$ ,  $C_{2v} \not\supseteq g_n \notin O_h$ . The existence of the tetrablock symmetry is the necessary, but not sufficient condition for the formation of real structures in phospholipid components (similar to the existence of the Fedorov group, which determines the possibility of crystalline ordering, and the real crystal).

The work was supported by assign. 0221-2017-0050, reg.№ AAAA-A17-117031710039-3.

## REFERENCES

- 1. Cartan E. Geometry of Riemannian Spaces. Brookline: Math Sci. Press, 1983.
- 2. Görner M. arXiv:1406.2827v3 [math.GT], 2016.
- 3. Thurston W.P. How to see 3-manifolds. Classical Quantum Gravity, 1998, v. 15, № 9, p. 2545–2571.
- 4. Agol I. Thurston's congruence link. http://www.math.uic.edu/  $\sim$  agol/conglink.pdf