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A.L.T a l i s, A.L.R a b i n o v i c h (Moscow, INEOS RAS; Petrozavodsk, IB
KarRC RAS). Hyperbolic tetrahedral honeycomb, symmetry of the Klein quar-
tic and the hidden (non-crystallographic) symmetry of components of natural
phospholipids.

Hydrocarbon components of natural phospholipids are linear chains; they can be ap-
proximated by chains of identical regular tetrahedra (which allow obtaining tetracoordinate
structures). To reveal the “hidden” symmetry of such chain molecules in 3-dimensional
Euclidean space E3, an important role can be played by the symmetry of their analogs in
3-dimensional Riemannian spaces: according to [1, p. 99], there is an osculating Euclidean
space to the given Riemannian space along the length of a given line. Let us consider the
case of the space H3 of constant negative curvature, tesselated by ideal tetrahedra; these
are hyperbolic honeycomb {3, 3, 6}, each edge of which has 6 ideal hyperbolic tetrahedra
[2, 3]. It is necessary to reveal the maximal basic structural unit, which is the join of
face-sharing regular tetrahedra, and the number of vertices of which does not change under
mapping from H3 to E3. Such a unit can not keep more than 5 tetrahedra because it’s
impossible to combine 6 regular tetrahedra at one edge in E3. There are only 8 finite-
volume universal regular hyperbolic tetrahedral tesselations [2], and the desired unit must
have the ability of embedding to each of them. The only compromise option is the 7-vertex
linear join of 4 face-sharing regular tetrahedra, the tetrablock.

According to [4], the “right-hand” join M(T2+ζ) containing 28 hyperbolic tetrahedra
(where T2+ζ is the 7-vertex triangulation of a torus,

ζ =
1+
√
−3
2

, (2+ζ)(2+ζ) = 7

[2]) is embedded in the honeycomb {3, 3, 6}. It has a symmetry group PSL(2,7) of or-
der 168, and is one of the above mentioned 8 finite-volume universal regular hyperbolic
tetrahedral tesselations. It is shown that there is a possibility to obtain the M(T2+ζ)
tesselation as 7 quadruples of hyperbolic tetrahedra (which correspond to tetrablocks),
and all the sets considered in [4] can be defined by decompositions into the adjacent
classes of group PSL(2, 7) ≡ 7O, — that is the Klein quartic symmetry group, namely

7O=
56⋃

i=1

giC3=
28⋃

n=1

gnD3=
24⋃

j=1

gjC7=
8⋃

k=1

gkM3,7=
7⋃

m=1

gmO
′=

4⋃

f=1

C2gfO
′,

where C3 and C7 are the symmetry groups of the triangle and the heptagon, C3 ⊂ D3,
D3 is dihedral group, M3,7 is the direct product of C3 and C7, the subgroups O

′ and O′′

(the“left-hand”join M(T2+ζ) of the 28 tetrahedra corresponds to the above decompositions

of 7O with the group O′′ ) are not conjugated in 7O and coincide with the rotation group
of the cube, C2 is the symmetry group of the “right-hand” tetrablock,

gi /∈ C3, gn /∈ D3, gj /∈ C7, gk /∈M3,7, gm, gf /∈ O
′.
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The numbers of cosets 56, 24, 8, 7 are determined by the fact that in the Klein quar-
tic [2, 4] (that is defined as the tesselation of a sphere with 3 handles into 24 reg-
ular hyperbolic heptagons) 3 heptagons meet at each of the 56 vertices belonging to
7 cubes. When the centers of all 24 heptagons are joined, then 56 equilateral hy-
perbolic triangles are formed, each of degree 7 meeting at 24 vertices. Each of the
8 cyclic subgroups C7 (“axes” C7 ) of the group

7O fixes a certain triple of hep-
tagons. The amphichiral tetrablock also exists, it is determined by the decomposition

of

PGL(2, 7) ≡ 7Oh =
4⋃

n=1

C2vgnOh,

where Oh is the point group of cube, C2 ⊂ C2v, C2v 63 gn /∈ Oh. The existence of the
tetrablock symmetry is the necessary, but not sufficient condition for the formation of real
structures in phospholipid components (similar to the existence of the Fedorov group, which
determines the possibility of crystalline ordering, and the real crystal).
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