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In this note we are concerned with theorems to the real valued periodic functions of
n real arguments defined on all of R™. A function f: R™ — R is called periodic with
period T if there exists a vector T # 0 such that f(¥+7T) = f(¥) for all ¥ € R™. This
concept is used in the mathematical modeling of self-similar objects and their properties,
and of different repetitive processes in time and space. For example, it arises in the study
of the band structure of solid state [1]. The wave function ¢ satisfies the Born—Karman
conditions (7 + N;a;) = ¢(7), ¢ =1,...,d, where d is dimension of Bravais lattice, @;
are its primitive vectors, N; are integers. We study the relationship between the periodicity
of a multivariate function in the sense of the above definition and its periodicity with respect
to individual variables.

Definition 1. Let f: R™ — R be a periodic function with period T. If there exists
a period T of the least magnitude and direction of the vector T', then it is called a basic

period of function f along a given unit vector 7, where T = |T|-T.

Now suppose the set of a straight lines ¢7(@) in R™ parallel to the vector T, where
@ is a radius vector of certain point of ¢(a). Let us choose this point such that (@, T) = 0,
then the correspondence @ — ¢7(a) is one-to-one. Restriction of the function f: R™ — R
to any one of the considered straight lines is given by

FO) et = f@+t7), 1)

it is a function of one variable t € R.

Theorem 1. Let f: R™ = R be a periodic function with period T. If at least one
of the restrictions of function f to the straight lines {x(a) is_continuous and nonconstant,
then there exists basic period of f along a given unit vector T.

Theorem 2. If f: R® — R is periodic function with basic period Tg along a
given unit vector T, then any its period T parallel to the vector T is T =k -To, where
ke Z\{0}.

Theorem 3. Suppose that f : R™ — R is periodic function with basic period To
along a given unit vector T, and A : R™ — R™ is nonsingular linear operator. Then
the function composition fo A : R™ — R is periodic with basic period A™'Tqy along a

respective unit vector 7, where ATy = |A™'To| - 7.

Proof Let f: R™ — R be a periodic function with basic period Ty ; then it
follows from the equalities f(A(F +.A7'To)) = f(AT + To) = f(AF) for all 7 € R™ that
the vector A~Ty is a period of function composition foA: R™ — R. Let us suppose that
A™'Ty is not basic period of this function along a given unit vector 7, then there exists

another period T of the least magnitude and parallel to the vector 7, i.e. T = i.A*lTio,
where 0 < A <1, and f(A(F+T)) = f(AF). On the other hand, the vector AT = AT
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is a period of function f, and |AT| < |To|. This fact contradicts our previous assumption

that T is basic period of function f along a given unit vector 7.

Remark 1. Let f: R™ — R be a periodic function, the vector Ty is its basic
period along a given unit vector 7, and A : R™ — R™ is nonsingular linear operator. If
the components of the vector 7 are elements of the i-th column of the matrix A of linear
operator A, then the function composition fo.A: R®™ — R is a periodic with basic period
|To|e; along a given unit vector €;. In other words, this function is a periodic with respect
to variable z;, and number |To| is its basic period. Here and everywhere below {&;}7,

is a natural Hamel basis in R".

Remark 2. It is possible for a m-dimensional lattice [3, p. 11] to be a set of periods
of a periodic function f: R™ — R. A set of all possible non-trivial linear combinations of
m linearly independent n-dimensional vectors T4, T, ..., T with integers as coefficients
is called m-dimensional lattice. The vectors T1, T2, ..., T are called a primitive vectors
of the lattice, they are necessarily basic periods of function f in respective directions. By
choosing the matrix A of linear operator A it is possible for function f: R™ — R to be

a periodic with respect to any m variables with periods |T1|, |Tz|,..., |Tm| respectively.

If the restriction of the function f: R™ — R to any straight line ¢7(a) is constant,
then this function is called a constant along a given unit vector 7. It means that for any
fixed vector @ the function (1) does not depend in variable t.

Theorem 4. If f : R"j R is constant along a given unit vector T, then it is
periodic function with period T, where o € R\ {0} .

Remark 3. If the function f: R™ — R is constant along all linearly independent
given unit vectors 71, Ta,..., T %, then the linear span of the vectors T1, T2,..., T & is
a set of periods of this function. Here k < mn, in the case of k = n the function f is
identically constant.

Remark 4. Let f: R"™ — R be a constant function along a given unit vector
T . If the components of the vector 7 are elements of the ith column of the matrix A of
linear operator A, then the function composition fo.4: R™ — R is constant with respect
to variable x;, i.e. this function does not depend in variable x;.

Remark 5. Let f: R"™ — R be a constant function along all linearly independent
given unit vectors 71, T2,..., 7%, where k < n. By choosing the matrix A of linear
operator A it is possible for function fo . A: R™ — R to be a constant with respect to
chosen of k variables.

Without loss of generality it can be assumed that any function f : R® — R is a
periodic with respect to m variables, it is constant with respect to other k variables, and
it is non-periodic with respect to n —m — k remaining variables.
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