
I. S o n i n (Москва/Charlotte, ЦЭМИ РАН/ UNC). The optimal stopping of
Markov chain and its application to other probability problems.

The optimal stopping (OS) of a Markov chain (MC) is a classical problem of stochastic

control. The main goal of the talk is to show that this model has broad applications and
can serve as building block for more general applied probability models. The second goal

is to show that the State Elimination Algorithm (SEA) for OS of MC developed earlier

by the author (Sonin (1995, 1999) can be also applied to a wider range of problems of
stochastic control.

We discuss these problems in a framework of a general Markov Decision model (MD-
M) which for the discrete case is specified by a tuple M = (X, A(x), P a, r(x, a), β), where

X is a finite (countable) state space, A(x) is countable action space, P a = {p(x, y|a)}
is a transition matrix and r(x, a) is a reward function at state x if the action a is
used, β is a discount factor, 0 < β 5 1. The goal is to select a strategy maximizing

the expected total reward over all possible strategies π, and to find the value function
v(x) = supπ Eπ

x

∑∞
i=0 βir(Zi, Ai), where (Zi, Ai) is the random process of states and

actions. Without loss of generality we can assume that β = 1 but there is an absorbing

state e and the probability of “survival” β(x) 5 1. We denote Px, Ex the probability
measure and expectation after such modification. If an action space A(x) consists of two

actions c, “to continue” and s, “to stop”, we obtain an OS model. In this case we de-

note r(x, c) = c(x), a one step cost function, r(x, s) = g(x), a terminal reward function,
Pf(x) =

∑
p(x, y)f(y). Then the classical problem of OS of MC is

P r o b l e m 1. To find the value function v, and to find, if it exists, the opti-
mal stopping set S = {x : g(x) = v(x)}, and thus to solve the corresponding Bellman

(optimality) equation v = max(g, c + Pv).

The following class of applied probability models is a special case of a general MDM
but much more general than OS model. A general CRQ (continue, restart, quit) model

is a model, where a subset of state space X, B = {s1, . . . , sm} is fixed, and at each state

x a set of available actions A(x) = {c, q, rj , j = 1, . . . , m}. If an action c, “continue” is
selected then r(x, c) = c(x) and transition to a new state occurs according to transition

probabilities p(x, y) from a stochastic matrix P, if an action q, “quit” is selected then

r(x, q) = q(x) and transition to an absorbing state e occurs with probability one, if an
action ri, “restart to state si” is selected then r(x, ri) = ri(x) and transition to a state

si occurs with probability one.
P r o b l e m 2. To find an optimal strategy and the value function h(x) for the

CRQ model. Corresponding Bellman (optimality) equation is

h(x) = max[c(x) + Ph(x), q(x), maxi(ri(x) + h(si)].
If set B = {s}, β(x) = β, r(x) = 0 and q(x) = −∞, for all x ∈ X, i. e. there is

only one restarting point, discount factor is a constant, restart fee is equal to zero, and

quit action is never used then h(x) coincides with an index introduced by Kathehakis and
Veinot (1987). Problem 1 is related to Problem 2 for the case of set B = {s} but with

general functions r(x) and q(x) through the following construction (Retirement Process

model) introduced by Whittle (1980). Given a model M, let us consider the parametric
family of OS models M(k), where the terminal reward function g(x) = r(x) + k for all

x ∈ X, k is a real number. Denote v(x, k) the value function for such a model and

let w(x) = inf{k : v(x, k) = k + r(x)}. Generalizing the result of Whittle we prove
that h(x) = w(x) and to calculate w(x) we apply SEA. To solve Problem 2 we develop

an iterative procedure. The problems under consideration are related closely also to a

classical Gittins index and to its generalizations analyzed in Sonin (2008) and Presman,
Sonin (2006).


