А. В. Ш а п о в а л о в (Москва, ТВП). Предельные характеристики случайной заведомо совместной системы линейных уравнений над конечным полем.

Для каждого $i=2,\ldots,m$ через Λ_i обозначим некоторым образом упорядоченное множество всех линейных функций над конечным полем из q элементов $\mathrm{GF}(q)$, зависящих ровно от i переменных. Пусть заданы такие неотрицательные константы $c_2,\ldots,c_m,c_{2,1},c_{2,2}$ ($c_{2,2}=0$ при q=2), что $c_2+\cdots+c_m=1$, $c_2=c_{2,1}+c_{2,2}$.

Cлучайная заведомо совместная система линейных уравнений S над конечным полем GF(q) относительно n неизвестных x_1, \ldots, x_n состоит из M уравнений, которые выбираются последовательно, случайно и независимо друг от друга. Вероятность появления уравнения с функцией из Λ_i равна $c_i, i = 2, ..., m$. При $q > 2 \; (q = 2)$ вероятности появления в уравнении функций y_1-y_2 и y_1+y_2 равны $c_{2,1}$ и $c_{2,2}$ (c_2) , соответственно. Выбор i неупорядоченных переменных для каждого уравнения с функцией из Λ_i осуществляется случайно и равновероятно из всех возможных неупорядоченных наборов неизвестных по i штук по схеме без возвращения. В уравнениях с функцией $y_1 - y_2$ выбранные переменные упорядочиваются независимо, случайно и равновероятно. При условии появления в левой части уравнений функций, зависящих от i переменных, $i = 3, \ldots, m$, выбор конкретной функции i переменных, значения правой части уравнения из GF(q), а также упорядочение переменных для несимметрических функций осуществляется некоторым произвольным образом. Правая часть каждого уравнения равна значению функции в ее левой части, получаемому при подстановке вместо x_1, \ldots, x_n компонент некоторого вектора (b_1, \ldots, b_n) , принадлежащих GF(q).

Обозначим ζ число решений S, деленное на величину q^{n-M} . Пусть $(s)_2 = s(s-1)$, $\lambda = -(1/4)\log((1-2cc_2)(1+2c(c_{2,2}-c_{2,1})))-cc_2$. Асимптотические формулы приводятся при $n\to\infty$, M=M(n).

Теорема. Если c — константа, $c_2 > 0$ и выполнено условие

$$M \sim cn$$
, $0 < c < (c_2(2)_2 + c_3(3)_2 + \dots + c_m(m)_2)^{-1}$, (1)

то $\mathbf{P}\left\{\zeta=q^k\right\}\sim e^{-\lambda}\lambda^k/k!,\ k=0,1,2,\ldots,\ u\ \mathbf{E}\ \zeta^r\sim e^{\lambda(q^r-1)},\ r=1,2,\ldots$ Если $M=o\left(n\right)$ или выполнено условие (1) и $c_2=0,$ то $\mathbf{P}\left\{\zeta=1\right\}\sim 1$ и $\mathbf{E}\ \zeta^r\sim 1,$ $r=1,2,\ldots$

При q=2 предельные распределения для ζ получены в работе [3]. Из результатов статьи [2] можно получить распределение числа решений для соотношения n и M(n), когда $q^{n-M} \mathbf{E} \zeta = O(1)$, случай q=2, m=2 для выборки неизвестных по схеме с возвращением рассмотрен в книге [1]. Теорема справедлива и при выборке по схеме с возвращением, при этом величина λ заменяется на $\hat{\lambda} = \lambda + cc_2$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Колчин В. Ф. Системы случайных уравнений. М.: МИЭМ, 1988.
- 2. *Копытцев В. А.* Предельные теоремы для числа решений системы случайных уравнений. Теория вероятн. и ее примен., 2000, т. 45, в. 3, с. 52–72.
- Shapovalov A. V. Characteristics of random systems of Boolean equations with nonregular left-hand side. — In: Proceedings of the Fifth International Petrozavodsk Conference. Utrecht, Boston, Koln, Tokyo: VSP, 2002, p. 333–342.