Н. В. Φ о м и ч е в (Москва, МИ Φ И). Свойства линейных признаков в полугруппах преобразований.

Во многих приложениях важной задачей является определение линейной подполугруппы заданной полугруппы G преобразований пространства P^r над полем P характеристики q.

В [2] показано, что линейная подгруппа группы G содержится в пересечении четырех наследственных подмножеств группы G. В работе, представленнгой данным сообщением, получено включение линейной подполугруппы SL(r,P) преобразований пространства P^r в пересечение пяти наследственных подмножеств. Для групп данная оценка улучшает известную оценку из [2].

Полугрупповой признак SL(r,P) в полугруппе $\Sigma(P^r)$ всех преобразований векторного пространства P^r назовем линейным признаком.

Пусть Σ_{θ} , \overline{C} , $\Lambda^{[p\nu]}(P^r)$ и $\Sigma(P^r)$ суть наследственные признаки в полугруппе, называемые *стабилизатором нуля*, *множеством*, соответственно, *всех замкнутых* сверху, *p-нормально неподвижных* и $\overline{\sigma}$ -стабильных преобразований пространства P^r .

Пусть $T_x(g)$ есть дерево с корнем x, являющееся таким максимальным подграфом графа Γ_g , что x — циклическая вершина в Γ_g , и все остальные вершины из $T_x(g)$ — ациклические. Пусть $n_{x,i}(g)$ — количество вершин на i-м уровне дерева $T_x(g)$. Обозначим H(q|r) множество таких преобразований g из $\Sigma(P^r)$, что величина $\sum_{i=0}^k n_{x,i}$ делится на q для любой циклической вершины x графа Γ_g и при любом $k=1,\ldots,h$, где k — максимальная длина подхода в графе Γ_g .

Теорема. Справедливо включение: $SL(r,P) \subseteq \Sigma_{\theta} \cap \overline{C} \cap \Lambda^{[p\nu]}(P^r) \cap \Sigma(P^r) \cap H(q|r)$. В частном случае линейной подгруппы доказанное включение улучшает оценку из [2], так как замкнутые сверху преобразования содержатся во множестве унидоминантных преобразований.

Следствие 1. Если хотя бы один из признаков Σ_{θ} , \overline{C} , $\Lambda^{[p\nu]}(P^r)$, $\Sigma(P^r)$ или H(q|r) пуст в полугруппе G, то пуст и линейный признак.

Спедствие 2. Если для полугруппового преобразования g нулевой элемент пространства P^r лежит на подходе графа Γ_g , то линейный признак пуст в циклической полугруппе $\langle g \rangle$.

Утверждение 1. Если в графе Γ_g полугруппового преобразования g количество циклических точек не равно степени q, то линейный признак в циклической полугруппе $\langle g \rangle$ пуст.

Д о к а з а т е л ь с т в о. Согласно [1], любое линейное преобразование пространства подобно матрице, называемой естественной нормальной формой. Она состоит из двух блоков, расположенных на главной диагонали. Один блок описывает цикловую структуру преобразования, а второй — структуру подходов в графе Γ_g . Из свойств естественной нормальной формы следует, что количество циклических точек равно степени характеристики поля P. Кроме того, количество циклических точек преобразования g^t инвариантно одинаково для любого t, поэтому количество циклических точек любого преобразования полугруппы $\langle g \rangle$ также есть степень g.

Исследуем линейную подполугруппу генераторов [d,k]-самоусечения [3], построенных на основе линейного регистра связи (ЛРС) с обратной связью f, реализующего подстановку h пространства P^r . Если на выходе ЛРС — ноль, то состояние x заменяется на $h^d(x)$, если единица — на $h^k(x)$. Продвижка σ ЛРС за один такт определяется формулой $\sigma = d(f(x) \oplus 1) + kf(x)$. Порождаемая генератором циклическая полугруппа есть $\langle h^\sigma(x) \rangle$.

Пусть генератор имеет ненулевое начальное заполнение, а Π PC имеет максимальный период.

Утверждение 2. Если преобразование д пространства P^r реализует генератор [t, 2t]-самоусечения и HOД(t, 2r-1) = 1, то линейный признак в циклической полугруппе $\langle g \rangle$ пуст.

Доказательство. В [3] показано, что граф Γ_g состоит из циклов и подходов. В условиях утверждения генератор имеет единственный цикл длины $\lfloor 2/3(2^r-1) \rfloor$, что больше половины точек всего пространства P^r . Следовательно, по утверждению 1 линейный признак в циклической полугруппе $\langle g \rangle$ пуст.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гилл. А. Линейные последовательные машины. М.: Наука, 1974, 288 с.
- 2. Фомичев В. М. О линейной подгруппе группы преобразований некоторых генераторов гаммы с неравномерным движением. В сб.: Вестник МГУЛ, № 95. М.: МГУЛ, 2006, 7 с.
- 3. Rueppel R. A. When shift registers clock themselves. In: Lecture Notes in Comp. Sci., 304. Berlin: Springer-Verlag, 1988.