Е. В. Булинская, **Н. А. А**ржанова (Москва, МГУ). Стохастические модели страхования с ограничениями в рамках стоимостного подхода.

В работе, представленной данным сообщением, исследуются стохастические модели страхования с дискретным временем с использованием стоимостного подхода, введенного в [1] и развитого в [2]. Предположение о том, что решения принимаются страховой компанией периодически, представляется разумным, поскольку обычно финансовый баланс подводится в конце календарного года, длительность договоров перестрахования также равна одному году.

Ниже рассматриваются два класса моделей. Особенность первого состоит в том, что для предотвращения разорения компания в конце каждого года может принимать решение о продаже активов и/или взятии займа. При этом продажа производится немедленно, а средства от займа поступают с задержкой. В отличие от [2] вводятся ограничения на размер продаж a_1 и займов a_2 . В результате минимальные средние издержки $f_n(x)$ за n лет при начальном капитале x удовлетворяют следующему уравнению Беллмана:

$$f_n(x) = -r_1 x + \min_{(u,v) \in D_x} G_n(u,v),$$
 (1)

где $G_n(u,v)=(r_1-r_2)v+r_2u+L(v)+\mathbf{E}f_{n-1}(u-\xi),\ L(v)=\mathbf{E}[r_3(\xi-v)^++r_4(v-\xi)^+],\ D_x=\{(u,v):\ x\leqslant v\leqslant x+a_1,v\leqslant u\leqslant v+a_2\},\ r_1$ — потери от продажи единицы актива, r_2 — процентная ставка по займу, r_3 — штраф за задержку в оплате единичного иска, r_4 — коэффициент инфляции, а ξ — суммарный иск за год. Предполагается, что ξ имеет функцию распределения F(x), обладающую плотностью $\varphi(x)>0$ в некотором конечном или бесконечном интервале. Сформулируем один из результатов.

Теорема 1. Пусть $a_1 = \infty$, $a_2 < \infty$ и $r_2 < r_1 - r_3$. Тогда на первом шаге n-шагового процесса оптимально продать количество активов $z_{1n} = (w_n - x)^+$ и занять $z_{2n} = \min \{a_2, (u_n - x - z_1^{(n)})^+\}$, где w_n и u_n — это соответственно корни уравнений $dG_n(w_n, w_n + a_2)/dv = 0$ и $\partial G_n(u_n, v)/\partial u = 0$. Существует $\lim_{n \to \infty} w_n \leqslant \bar{t}$, где $F(\bar{t}) = r_3/(r_3 + r_4)$.

Второй класс моделей учитывает наличие перестрахования. Как и ранее, ξ будет представлять размер иска за год. Ежегодные премии предполагаются детерминированными и равными c. Пусть используется перестрахование эксцедента убыточности с уровнем собственного удержания b. Необходимо выбрать b, как функцию начального капитала x, таким образом, чтобы минимизировать возникающие издержки за n шагов. Иначе говоря, мы ищем функцию $f_n(x)$, удовлетворяющую уравнению

$$f_n(x) = \min_{b \ge b_0} \{g_1(b, x) + \mathbf{E} f_{n-1}(a(b, x) - \xi)\},\$$

где b_0 — минимальный уровень собственного удержания, устанавливаемый законом, $g_1(x,b) = r \mathbf{E} (\eta - a(b,x))^+, \ \eta = \min{\{\xi,b\}}, \ a(b,x) = x + c - \rho \mathbf{E} (\xi-b)^+, \ r$ — процентная ставка за ссуду при нехватке средств для удовлетворения иска, а ρ учитывает нагрузку премии перестрахования.

Приведем простейший результат.

Теорема 2. Пусть $b_0=0,\ n=1,\ morda\ npu\ x< x_1\ onmuмальный уровень собственного удержания <math>b(x)=\infty\ (m.e.\ nepecmpaxoвание\ нe\ ucnoльзуется),\ b(x)=\bar{b}(x),\ ecлu\ x_1\leqslant x< x^*\ u\ b(x)=b^*,\ \kappa orda\ x\geqslant x^*.\ 3decb\ b^*=\overline{F}(\rho^{-1}),\ x_1=b^*-c,\ x^*=b^*-c+\rho \mathbf{E}(\xi-b^*),\ \overline{F}(x)=1-F(x),\ a\ \bar{b}(x)\ onpedeллemcs\ us\ уравнения\ a(\bar{b}(x),x)=b^*.$

Исследовано предельное поведение капитала компании при $n \to \infty$. Также изучена чувствительность моделей к изменениям параметров.

Работа выполнена при частичной поддержке гранта РФФИ № 07-01-00362.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Булинская Е. В.* О стоимостном подходе в страховании. Обозрение прикл. и промышл. матем., 2003, т. 10, в. 2, с. 276–286.
- 2. Bulinskaya E. V. Some aspects of decision making under uncertainty. J. Statist. Plann. Inference, 2007, v. 137, \aleph_2 8, p. 2613–2632.