В. А. Алякин, Д. Э. Клепнев (Самара, СамГУ). Критерий равностепенной абсолютной непрерывности двух последовательностей мер.

Пусть \mathcal{R} — кольцо множеств. Функция множества λ : $\mathcal{R} \to [0,+\infty], \ \lambda(\varnothing) = 0$, называется *субмерой*, если она монотонна и полуаддитивна. Субмера λ называется *совершенно полной*, если для всякой последовательности множеств $\{E_k\}_k \subset \mathcal{R}$ из того, что $\sum_{k=1}^{\infty} \lambda(E_k) < +\infty$, следует $\bigcup_{k=1}^{\infty} E_k \in \mathcal{R}$ и $\lambda(\bigcup_{k=1}^{\infty} E_k) \leqslant \sum_{k=1}^{\infty} \lambda(E_k)$.

О п р е д е л е н и е 1 [1]. Последовательность субмер $\{\lambda_k\}_k$ называется слабо диагональной, если для всякой подпоследовательности $\{\lambda_{m_k}\}_k$ и для всякой последовательности множеств $\{E_k\}_k \subset \mathcal{R}$ из условия $\lambda_{m_k}(E_k) \to_{k \to \infty} 0$ следует, что существует такой номер n, что $\lambda_{m_n}(E_k) \to_{k \to \infty} 0$.

О п р е д е л е н и е 2. Последовательность функций множества $\{\mu_k\}_k$ (для любого $k \in \mathbb{N}$, μ_k : $\mathcal{R} \to (-\infty, +\infty]$, $\mu_k(\varnothing) = 0$) называется равноственно абсолютно непрерывной относительно последовательности субмер $\{\nu_k\}_k$ (обозначение: $\{\mu_k\}_k \ll \{\nu_k\}_k$), если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что для любых $k \in \mathbb{N}$, $E \in \mathcal{R}$ ($\nu_k(E) < \delta \Rightarrow |\mu_k(E)| < \varepsilon$).

Если для любого $k \in \mathbf{N}$ ($\mu_k = \mu, \nu_k = \nu$), то вместо $\{\mu_k\}_k \ll \{\nu_k\}_k$ пишем $\mu \ll \nu$. **Теорема.** Пусть \mathcal{R} — кольцо множеств, $\{\mu_k\}_k$ — последовательность или конечно-аддитивных функций множества, или субмер, $\{\nu_k\}_k$ — слабо диагональная последовательность субмер. Если для любого $k \in \mathbf{N}$ $\mu_k \ll \nu_k$, то для $\{\mu_k\}_k \ll \{\nu_k\}_k$ необходимо и достаточно, чтобы для всякой дизъюнктной последовательности множеств $\{E_k\}_k \subset \mathcal{R}$ из условия $\nu_k(E_k) \to_{k \to \infty} 0$ следовало $\mu_k(E_k) \to_{k \to \infty} 0$.

Эта теорема усиливает теорему 7.3.3 работы [2] в двух направлениях: условие е диагональности последовательности субмер $\{\nu_k\}_k$ заменено условием слабой диагональности; устранено условие совершенной полноты субмер последовательности $\{\nu_k\}_k$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Алякин В. А., Клепнев Д. Э. Диагональные последовательности мер. Вестник СамГУ. Естественнонаучная серия, 2006, N_2 2 (42), с. 5–14.
- 2. *Климкин В. М.* Введение в теорию функций множества. Саратов: Изд-во Саратовского ун-та, 1989, 209 с.