Е. Л. Бородулина (Пермь, ПГТУ). Ободном методе различения семейств распределений для моделей с тяжелыми хвостами.

В работах [1, 2] описывается возможность использования семейства распределений Стьюдента в качестве удобной модели распределений с «тяжелыми хвостами», так как для него в силу относительной простоты представления плотности (в отличие, например, от устойчивых законов) многие выражения, в частности, функция правдоподобия, имеют явный вид. Вместе с тем, для параметра формы $\gamma \in [0,2]$ асимптотическое поведение хвостов распределения Стьюдента (при $|x| \to \infty$) совпадает с аналогичным поведением хвостов устойчивых законов.

Задача статистического анализа распределений многих реальных случайных величин и процессов сводится к статистическому определению смешивающего распределения, которое является неизвестным параметром задачи. Распределение Стьюдента с параметрами формы и масштаба ν и λ , соответственно, принадлежит к семейству масштабных смесей нормальных законов [2, 3] с функцией распределения $G_{\nu,\lambda}(x) = \mathbf{M} \, \Phi(x \sqrt{Y})$, где компоненты смеси имеют структуру $X = Z/\sqrt{Y}$, $Z \sim N(0,1),Y$ — гамма-распределение с параметром 2ν формы и параметром $\lambda/2$ масштаба и величины Z и Y независимы.

Проверка гипотез о типе выборочного распределения, где основной гипотезой выступает распределение Стьюдента с оцененными по выборке параметрами $\widetilde{\nu}$ и λ , на самом деле лишь сравнивает между собой теоретическое и эмпирическое распределения, но ничего не говорит об абсолютном качестве согласия семейства Стьюдента с эмпирическими данными. В работе, представленной данным сообщением, предложен критерий согласия о том, что наблюдаемая выборка извлечена из совокупности Стьюдента, причем сам критерий основан на соответствии распределений смесителя и смеси. Как упоминалось выше, распределению смеси $G_{
u,\lambda}(x)$ соответствует смешивающее распределение $\Gamma_{2\nu,\lambda/2}$. С другой стороны, случайная величина $X \sim \Gamma_{2\nu,\sqrt{\lambda}}$ представима в виде $X = Z\sqrt{V},$ где случайные величины Z и V независимы и $V \sim \Gamma_{2\nu,\lambda/2}$ [2]. В силу того, что случайная величина V ненаблюдаема и извлечь ее из наблюдений величины X невозможно, определяется nceedocmecument— вспомогательная величина $V^* = (X/Z)^2$, в которой величины X и Z независимы, а значения величины Z имитируются. Таким образом, псевдосмесители Y^* и V^st для смесей распределения Стьюдента и гамма-распределения будут определяться следующим образом: $Y^* = (Z/X_T)^2$ и $V^* = (X_\Gamma/Z)^2$. Учитывая, что распределения случайных величин Y^* и V^* однозначно характеризуют распределения исходных смесей, проверка гипотезы о том, что выборка наблюдаемых величин порождается распределением Стьюдента с параметрами $\tilde{\nu}$ и λ , сводится к проверке гипотезы о том, что выборки (Y_1^*, Y_2^*, \ldots) и (V_1^*, V_2^*, \ldots) порождены одним и тем же распределением.

СПИСОК ЛИТЕРАТУРЫ

- Praetz P. D. The distribution of share price changes. J. Business, 1972, v. 45, i. 1, p. 49–55.
- 2. Королев В. Ю., Бенинг В. Е., Шоргин С. Я. Математические основы теории риска. М.: Физматлит, 2007, 544 с.
- 3. Blattberg R. C., Gonedes N. J. A comparision of the stable and Student distributions as statistical models for stock prices. J. Business, 1974, v. 47, i. 2, p. 34–105.