А. М. Γ р и ш и н (Москва, ТВП). Некоторые соотношения между действительной и мнимой частями спектра Фурье речевого сигнала.

Представление сигналов или других функций с помощью суммы комплексных экспонент часто приводит к удобным решениям и позволяет глубже понять суть изучаемых явлений. Преобразование Фурье традиционно играет ведущую роль в исследованиях и технике передачи речи. При этом, как правило, рассматриваются различные способы оценки и представления амплитудного и реже фазового спектра речевого сигнала (PC) [1]. Вместе с тем, спектральное представление можно рассматривать как комплекснозначную функцию, состоящую из действительной и мнимой частей. Применительно к PC можно поставить следующие вопросы: насколько действительная и мнимая части спектра сохраняют информацию об исходном сигнале; насколько «близкими» являются мгновенные и средние значения действительных и мнимых частей спектра.

Для ответа на эти и сопутствующие им вопросы были выбраны 4 речевых фрагмента (паузы удалены) на русском, английском и арабском языках общим объемом $\approx 30\,\mathrm{мин}$. Каждая временная функция x(t), в дискретном представлении $\{x[n] = x_n\}$, на основе дискретного преобразования Фурье (ДПФ) переводилась в спектральное представление

$$X_n(e^{iw}) = \text{Re}\{X_n(e^{iw})\} + i \text{Im}\{X_n(e^{iw})\}.$$
 (1)

Из (1) посредством обратного ДПФ синтезировались временные функции $x_{\rm Re}[n]$ и $x_{\rm Im}[n]$, у которых ${\rm Im}\,\{X_n(e^{iw})\}$ и ${\rm Re}\,\{X_n(e^{iw})\}$ равны 0, соответственно.

В качестве статистических характеристик, по значениям которых можно судить о мере сходства и различия функций $x_{\text{Re}}[n]$ и $x_{\text{Im}}[n]$, рассматривались сдедующие характеристики.

1. Взаимные корреляционные функции

$$Cor_1[k] = x cov (x_{Re}[n_1], x[n_2]), \quad Cor_2[k] = x cov (x_{Im}[n_1], x[n_2]),$$

$$Cor_3[k] = x cov (x_{Re}[n_1], x_{Im}[n_2]),$$

где $k=n_1-n_2$ (x cov — обозначение используемой для вычислений функции системы MatLAB).

2. Математическое ожидание $\mathbf{M} e$, дисперсия $\mathbf{D} e$ и гистограмма плотности распределения нормированной энергии e[n] функции $x_{\mathrm{Re}}[n]$,

$$e[n] = \sum_{k=n-M/2}^{n+M/2} x_{\rm Re}^2[k] / \sum_{k=n-M/2}^{n+M/2} x^2[k],$$

где M — ширина временного окна при вычислении ДПФ.

3. Математическое ожидание $\mathbf{M}\,\mu$, дисперсия $\mathbf{D}\,\mu$ и гистограмма плотности распределения меры близости $\mu[n]$ мгновенных значений спектра функций $x_{\mathrm{Re}}[n]$ и $x_{\mathrm{Im}}[n]$,

$$\mu[n] = \int_0^\Pi \left(\left| X_n^{\mathrm{Re}}(e^{iw}) \right| - \left| X_n^{\mathrm{Im}}(e^{iw}) \right| \right) dw \middle/ \int_0^\Pi \left(\left| X_n^{\mathrm{Re}}(e^{iw}) \right| + \left| X_n^{\mathrm{Im}}(e^{iw}) \right| \right) dw.$$

Оценки введенных выше величин не зависят от языка. В табл. приведены некоторые числовые данные, которые позволяют сделать следующие выводы. Таблица.

$Cor_1[0] \approx Cor_2 \approx 0,7$	$\mathbf{M}\left(e\right)\approx0,5002$	$\mathbf{M}\left(\mu\right) \approx 0,53$
$\max_{-80 \leqslant k \leqslant 80} \{ \text{Cor}_3[k] \} < 0, 1$	$\mathbf{D}\left(e\right)\approx0,0005$	$\mathbf{D}\left(\mu\right)\approx0,03$

- 1. Качество PC, синтезированного только по действительной (мнимой) части спектра, снижается примерно на 30%, но разборчивость сохраняется.
- 2. С интегральной точки зрения (энергии) действительная и мнимая части частотного разложения РС являются полностью равноправными, но на различных гармониках могут быть существенные отличия.

СПИСОК ЛИТЕРАТУРЫ

1. *Рабинер Л. Р., Шафер Р. В.* Цифровая обработка речевых сигналов. М.: Радио и связь, 1981, 495 с.