Ю. Б. Буркатовская, С. Э. Воробейчиков (Томск, Т-ПУ, ТГУ). Последовательная оценка параметров процесса ARCH(1).

Рассматривается случайный процесс $\{x_l\}$ вида $x_l = \sigma_l \varepsilon_l$, $\sigma_l^2 = \mu + \lambda x_{l-1}^2$, где $\{\varepsilon_l\}$ $(l\geqslant 1)$ — последовательность независимых одинаково распределенных случайных величин с $\mathbf{M}\,\varepsilon_l = 0,\,\mathbf{M}\,\varepsilon_l^2 = 1.$ Ставится задача по наблюдениям за процессом $\{x_l\}$ оценить вектор неизвестных параметров $\Lambda = [\mu,\lambda]$ с гарантированной точностью.

Представим процесс $\{x_l^2\}$ в виде

$$x_i^2 = \sigma_i^2 + \sigma_i^2(\varepsilon_i^2 - 1) = (\mu + \lambda x_{i-1}^2) + (\mu + \lambda x_{i-1}^2)B\eta_i$$

где $\{\eta_l\}$ $(l\geqslant 1)$ — последовательность независимых одинаково распределенных случайных величин с $\mathbf{M}\,\eta_l=0,\,\mathbf{M}\,\eta_l^2=1,\,\mathbf{a}\,B^2=\mathbf{M}\,(\varepsilon_l^2-1)^2.$ Введем обозначения:

$$y_{l-1}^2 = \max{\{1, x_{l-1}^2\}}, \quad z_l = \frac{x_l^2}{y_{l-1}^2}, \quad a_{l-1} = \left[\frac{1}{y_{l-1}^2}, \frac{x_{l-1}^2}{y_{l-1}^2}\right]^T.$$

Перейдем к случайному процессу $\{z_l\}$ вида $z_l = \Lambda a_{l-1} + \Lambda a_{l-1} B \eta_l$, который, так как $\Lambda a_{l-1} \leqslant \mu + \lambda$, обладает ограниченной дисперсией шумов. Для оценивания вектора параметров Λ этого процесса предлагается использовать модифицированный метод наименьших квадратов. Оценка параметров имеет вид

$$\Lambda^*(H) = \left(\sum_{l=n+1}^{\tau} v_l z_{l+1} a_l^T\right) A^{-1}(\tau), \quad A(k) = \sum_{l=n+1}^{k} v_l a_l a_l^T,$$

где n — первоначальный объем наблюдений, необходимый для компенсации неизвестной дисперсии шумов, τ — случайный момент остановки вида τ = inf $\{k\geqslant 1: \nu_{\min}(k)\geqslant H\}$, где $\nu_{\min}(k)$ — минимальное собственное значение матрицы A(k). Пусть m — минимальное значение k, при котором A(k) невырождена, тогда на интервале $[n+m,\tau]$ веса v_l определяются из условий

$$\frac{\nu_{\min}(k)}{\Gamma_n} = \sum_{l=n+m}^k v_l^2 a_l^T a_l, \quad \frac{\nu_{\min}(\tau)}{\Gamma_n} \geqslant \sum_{l=n+m}^\tau v_l^2 a_l^T a_l, \quad \nu_{\min}(\tau) = H,$$

на интервале [n+1,n+m-1] веса отличны от нуля и равны $v_l=1/\sqrt{\Gamma_n a_l^T a_l}$, если a_{n+1},\ldots,a_l линейно независимы. Величина Γ_n зависит от $\{x_1,\ldots,x_n\}$ и компенсирует неизвестную дисперсию шумов процесса $\{z_l\}$. Среднеквадратичное отклонение оценки $\Lambda^*(H)$ от истинного значения параметров ограничено величиной $(H+1)/H^2$.