А. В. Бойков (Москва, ЗАО «Страхоавая компания «МСК-лайф»). Элементарный пример бизнес-плана в рисковом страховании.

Построение модели. Рассмотрим экономико-математическую модель бизнесплана по рисковому страхованию. Будем считать, что компания может предложить на рынке N однотипных в смысле принимаемого на себя риска договоров страхования со страховой премией GP за один договор, произведя затраты Π_1,\ldots,Π_N на изготовление и потенциальное сопровождение договоров в рамках планируемых бюджетных ограничений $\Pi_1+\cdots+\Pi_N\leqslant\Pi$. В качестве функции спроса используем вероятность p покупки клиентом одного договора, которая, вообще говоря, зависит от GP. Пусть выплаты по k-му договору страхования описываются случайной величной X_k , $\{X_k\}_{k=1}^{k=N}$ — неотрицательные независимые одинаково распределенные случайные величны. Финансовый результат по k-му договору $(k=1,\ldots,N)$ запишется в виде $S_k=\eta_k$ $(GP-X_k)-\Pi_k$, $\{\eta_k\}$ — независимые бернуллиевские величины, $P\{\eta_k=1\}=p$; финансовый результат по всем договорам

$$S = \sum_{k=1}^{N} S_k = \sum_{k=1}^{N} \eta_k (GP - X_k) - \Pi_k.$$

Вычислим вероятностные характеристики величин S_k :

$$\mathbf{E} S_k = p (GP - \mathbf{E} X_k) - \Pi_k, \quad \mathbf{D} S_k = \mathbf{D} \eta_k (GP - X_k) = p(1 - p)(GP - \mathbf{E} X_k)^2 + p \mathbf{D} X_k.$$

Заметим, что случай $p=1,\ \Pi_k=0$ приводит к модели индивидуального риска (см. [1]). Далее вычислим отчетные характеристики бизнес-плана и установим для них ограничения:

ожидаемый доход $\mathbf{E} = \mathbf{E} S = Np(GP - EX_1) - (\Pi_1 + \dots + \Pi_N) \geqslant \mu;$

надежность операций, когда с большой вероятностью собранных премий хватит как на оплату расходов, так и на страховые выплаты

$$\varphi = \mathbf{P}\left\{S \geqslant 0\right\} \approx \Phi\left(\frac{Np(GP - \mathbf{E}X_1) - (\Pi_1 + \dots + \Pi_N)}{\sqrt{N(p(1-p)(GP - \mathbf{E}X_1)^2 + p\mathbf{D}X_1)}}\right) \geqslant 1 - \varepsilon.$$

В отличие от модели индивидуального риска, в данной модели увеличение брутто-премии за один договор, вообще говоря, не приводит к улучшению рассмотренных отчетных характеристик в силу корректировки объема продаж функцией спроса. При разумных ограничениях на Π_k в зависимости от N или функциональной независимости от N, увеличение количества полисов, как и в модели индивидуального риска, ведет как к увеличению ожидаемого дохода, так и к увеличению надежности операций. Это означает, что, исходя из бюджетных ограничений, страховая компания при прочих равных условиях естественным образом должна предложить максимальное количество полисов $N_{\rm max}$, при этом функция предложения окажется равной 0 за исключением точки GP.

Дальнейший анализ производится методом сценариев на основании выбора функции спроса.

Примеры

П р и м е р 1. Пусть $p=(1+GP/\mathbf{E}\,X_1)^{-\alpha},\ \alpha>0$. Функция спроса p=p(GP) такого вида удовлетворяет следующим условиям: безразмерна; $0< p(GP)\leqslant 1;$ p(0)=1 и монотонно убывает по GP до 0; эластичность спроса по цене равна $e=P'/(P\,GP)=-\alpha\,GP/(GP+\mathbf{E}\,X_1).$

 Π р и м е р 2. Пусть $\Pi_1 = \cdots = \Pi_N = \beta$. Тогда в условиях примера 1 компания предлагает максимальное количество полисов $N_{\max} = \Pi/\beta$, ожидаемый доход

$$\mathbf{E} S = \frac{N(GP - \mathbf{E} X_1)}{(1 + GP/\mathbf{E} X_1)^{\alpha}} - \Pi$$

и при $\alpha > 1$ имеет максимум $2N_{\max} \mathbf{E} X_1(\alpha - 1)^{-1}((\alpha - 1)/(2\alpha))^{\alpha} - \Pi$ в точке $GP^* = ((\alpha + 1)/(\alpha - 1))\mathbf{E} X_1$.

 Π р и м е р 3. Пусть в примере 2 $X_k=SI$, где S— страховая сумма, $\mathbf{P}\left\{I=1\right\}=q,\,\mathbf{P}\left\{I=0\right\}=1-q,$ что соответствует, например, страхованию от несчастных случаев. Ниже приведены расчетные показатели ожидаемого дохода и надежности для различных значений страховой премии для случая $S=100000,\,q=0,1\%,\,\Pi=1000000,\,\Pi_1=\cdots=\Pi_N=10$:

Таблица. Показатели дохода и надежности в зависимости от объема продаж

$\alpha = 1$	GP	доход	надежность	GP	доход	надежность
1	110	-523809,52	$22,\!379\%$	200	2333333,33	99,997%
2	120	-90909,09	44,634%	210	2548367,10	100,000%
3	130	304347,83	67,788%	220	2750000,00	100,000%
4	140	666666,67	84,926%	230	3939393,84	100,000%
5	150	1000000,00	94,315%	240	3117647,06	100,000%
6	160	1307692,31	$98,\!255\%$	250	3285714,29	100,000%
7	170	1592592,59	99,558%	260	3444444,44	100,000%
8	180	1857142,86	99,906%	270	3594594,59	100,000%
9	190	2103448,28	99,983%	280	3736842,11	100,000%
10	200	2333333,33	99,997%	270	3444444,44	100,000%
$\alpha = 2$	GP	доход	надежность	GP	доход	надежность
1	110	-773242,63	5,212%	200	111111,11	63,057%
2	120	-586776,86	$9,\!826\%$	210	144641,00	$67,\!306\%$
3	130	-432892,25	15,960%	220	171875,00	70,881%
4	140	-305555,56	23,158%	230	193755,74	$73,\!866\%$
5	150	-200000,00	30,847%	240	211072,66	76,343%
6	160	-112426,04	38,499%	250	224489,80	$78,\!386\%$
7	170	-39780,52	45,722%	260	234567,90	80,063%
8	180	20408,16	$52,\!279\%$	270	241782,32	81,430%
9	190	70154,58	58,062%	280	246537,40	82,534%
10	200	111111,11	63,057%	270	249178,17	83,414%

СПИСОК ЛИТЕРАТУРЫ

1. Бауэрс Н., Гербер Х., Джонс Д., Несбитт С., Хикман Дж. Актуарная математика. М.: Янус-К, 2001.