В. В. Чичагов (Пермь, ПГУ). Статистики типа Смирнова-Колмогорова, основывающиеся на несмещенных оценках функции распределения из многопараметрического экспонециального семейства.

Для проверки простой гипотезы о виде распределения случайной величины и проверки гипотезы однородности двух независимых повторных выборок предлагается использовать соответственно статистики

$$D_{n}^{*} = \sup_{x \in \mathbf{R}^{l}} \left| \widehat{F}(x \mid S_{n,X}) - F(x, \theta_{0}) \right|, \quad D_{n,m}^{*} = \sup_{x \in \mathbf{R}^{l}} \left| \widehat{F}(x \mid S_{n,X}) - \widehat{F}(x \mid S_{m,Y}) \right|, \quad (1)$$

в которых $\widehat{F}(x|S_{n,X})$, $\widehat{F}(x|S_{n,Y})$ — несмещенные оценки функции распределения $F(x,\theta_0)$ по независимым повторным выборкам X_1,\ldots,X_n и Y_1,\ldots,Y_m .

Приводимое ниже утверждение представляет обобщение аналогичных результатов работы [1] на многопараметрический случай при следующих предположениях.

 (A_1) . Распределение $F(x,\theta_0)$ принадлежит многопараметрическому экспоненциальному семейству распределений с плотностью распределения вероятностей

$$f(x,\theta) = g(x) \exp\left\{ \sum_{j=1}^{k} \theta_j T_j(x) + V(\theta) \right\}, \quad x \in G \subset \mathbf{R}^l, \quad \theta = (\theta_1, \dots, \theta_k) \in \Theta \subset \mathbf{R}^k \quad (2)$$

по отношению к мере $\mu(\cdot)$, которая может быть либо мерой Лебега, либо считающей мерой; направляющий вектор $T(x) = (T_1(x), \dots, T_k(x))^T$ известен.

- (A_2) . **E** $T(X_1) = \mathbf{a}$, ковариационная матрица **D** $T(X_1) = \Sigma$ невырождена.
- (A_3) . Полной достаточной статистикой для параметра θ по выборке X_1,\dots,X_n является $S_{n,X}=\sum_{i=1}^n T(X_i)$. Если X_1 имеет абсолютно непрерывное распределение, то существует такое натуральное N, что при $n\geqslant N$ случайная величина $(S_{n,X}-n\mathbf{a})/\sqrt{n}$ имеет непрерывную ограниченную плотность распределения. В случае решетчатого распределения X_1 носитель (2) не содержится ни в какой подрешетке решетки \mathbf{Z}^l .
 - (A_4) . Для $\theta=\theta_0$ найдется такое $0\leqslant\gamma<0,25,$ что

$$\lim_{n \to \infty} \left[n \int_{E(n,1)} f(x,\theta) \, d\mu(x) \right] = 0, \qquad E(n,1) = \{ x \colon |T(x) - \mathbf{a}| \geqslant n^{\gamma} \}.$$

Теорема. Пусть выполнены условия (A_1) – (A_4) . Тогда

1) если элементы выборки $X_1, ..., X_n$ имеют одну и ту же функцию распределения $F(x, \theta_0)$, то верно соотношение

$$\lim_{n \to \infty} \mathbf{P} \left\{ \sqrt{n} D_n^* < u \right\} = 2\Phi \left(\frac{u}{\sigma_F} \right) - 1; \tag{3}$$

2) если элементы выборок X_1, \ldots, X_n и Y_1, \ldots, Y_m имеют одну и ту же функцию распределения $F(x, \theta_0)$, то верно соотношение

$$\lim_{n,m \to \infty} \mathbf{P} \left\{ \sqrt{\frac{nm}{n+m}} D_{n,m}^* < u \right\} = 2\Phi \left(\frac{u}{\sigma_F} \right) - 1. \tag{4}$$

В формулах (3)-(4) $\Phi(x)$ — функция распределения стандартного нормального закона,

$$\sigma_F^2 = \sup_{x \in \mathbf{R}^l} \mathbf{E} [I \{X_1 < x, X_2 < x\} (T(X_1) - \mathbf{a})^T \Sigma^{-1} (T(X_2) - \mathbf{a})],$$

 $г \partial e I \{A\}$ — индикатор A.

Исследование выполнено при поддержке РФФИ, проект № 05-01-00229.

СПИСОК ЛИТЕРАТУРЫ

 Chichagov V. Finding distribution of Kolmogorov statistic modification based on unbiased estimator of distribution function from exponential family. — In: Trans. of the XXVI International Seminar on Stability Problems for Stochastic Models. Israel: Ort Braude College, 2007, p. 60–63.