М.Ю.А фанасьев, А.В.Барминский (Москва, ЦЭМИ РАН). Обобщенное описание неэффективности производства в модели стохастической границы.

Попытка учесть воздействие на производственный процесс случайных факторов приводит от классической производственной функции $P_i = e^{\beta_0} L_i^{\beta_1} K_i^{\beta_2}$ к стохастической граничной функции $P_i = e^{\beta_0} L_i^{\beta_1} K_i^{\beta_2} e^{\varepsilon_i}$, где P_i — объем производства i-го объекта, $i=1,2,\ldots,N$; L_i — объем использованных трудозатрат, K_i — объем капиталовложений, β_0,β_1,β_2 — параметры производственной функции. Здесь ε_i — случайная величина, отражающая случайные воздействия на i-й объект. После логарифмирования, обозначая $\ln P_i$ через Y_i , $\ln L_i$ через x_{i1} , $\ln K_i$ через x_{i2} , получим $Y_i = \beta_0 + \sum_{j=1}^n \beta_j x_{ij} + \varepsilon_i$. В соответствии с [1] представим ε_i в виде $V_i - U_i$, где V_i — случайная величина, характеризующая влияние на i-й объект систематических воздействий, U_i — не зависящая от V_i случайная величина, характеризующая влияние факторов неэффективности на объем производства i-го объекта. Тогда случайная величина P_i = $\exp\{\beta_0 + \sum_{j=1}^n \beta_j x_{ij} + V_i - U_i\}$ есть фактический потенциал i-го объекта, а случайная величина $P_i^{\rm pot}$ = $\exp\{\beta_0 + \sum_{j=1}^n \beta_j x_{ij} + V_i\}$ — граничный производственный потенциал. Техническая эффективность i-го объекта определяется величиной $TE_i = P_i/P_i^{\rm pot} = e^{-U_i}$. В [2] построена модель достижимого производственного потенциала $P_i^{\rm pot} = \exp\{\beta_0 + \sum_{j=1}^n \beta_j x_{ij} + V_i - S_i\}$, где случайная величина S_i моделирует остаточную неэффективность, являющуюся результатом целенаправленного воздействия на факторы неэффективности производственного объекта.

В попытке обобщить описание неэффективной составляющей U_i модели стохастической границы и обеспечить корректные оценки технической эффективности производства относительно достижимого потенциала, положим $U_i = k_{U_i}DISTR_i$, где $DISTR_i$ — случайная величина с неотрицательным распределением и параметрами, не зависящими от $i,\ k_{U_i} = \exp\{\delta_0 + \sum_{k=1}^m \delta_k z_{ik}\},\ z_{i1},\dots,z_{im}$ — известные значения каждого из m управляемых факторов неэффективности, влияющих на i-й объект, $\delta_0,\delta_1,\dots,\delta_m$ — параметры модели. Построим случайную величину S_i как $S_i = \exp\{\delta_0 + \sum_{k=1}^m \delta_k z_{ik} - a_i\}DISTR_i$, где величина a_i есть решения задачи $a_i = a_i^C = \max\{\sum_{k=1}^m \delta_k \Delta z_{ik} : \Delta z_{ik} \in G_{ik}, k = 1,2,\dots,m, \sum_{k=1}^m c_{ik}(z_{ik},\Delta z_{ik}) \leqslant C_i\},$ $a_i^C \geqslant 0$. Здесь, как и в $[2],\ \Delta z_{ik}$ — изменение значения k-го фактора неэффективности, G_{ik} — множество всех допустимых воздействий на k-й фактор неэффективности, функция $c_{ik}(z_{ik},\Delta z_{ik})$ описывает размер финансовых затрат на проведение воздействия Δz_{ik} на k-й фактор неэффективности для i-го объекта, а C_i — сумма, выделенная на повышение эффективности производственного процесса i-го объекта. Тогда техническая эффективность производства относительно достижимого потенциала определяется величиной $TE_i^S = P_i/P_i^{\text{pot }S} = \exp\{(-1 + \exp\{-a_i\})U_i\}$.

В качестве случайной величины, характеризующей эффективность мероприятия, направленного на снижение неэффективности i-го объекта, естественно взять

$$TE_i^M = \frac{P_i^{\text{pot }S} - P_i}{P_i^{\text{pot }} - P_i} = \frac{1/TE_i^S - 1}{1/TE_i - 1}.$$

Этот способ описания эффективности мероприятия отличается от предложенного в [2]: $\overline{TE}_i^M = \frac{1-TE_i^S}{1-TE_i}$. При этом с вероятностью 1 имеет место неравенство $\overline{TE}_i^M \geqslant TE_i^M$. Анализ случайных величин TE_i^S и TE_i^M осуществляется после того, как выбрано распределение случайной величины $DISTR_i$.

СПИСОК ЛИТЕРАТУРЫ

1. Kumbhakar S. C., Lovell C. A. K. Stochastic Frontier Analysis. Cambridge, MA: Cambridge Univ. Press, 2000.

2. Айвазян С. А., Афанасьев М. Ю. Оценка мероприятий, направленных на управление факторами неэффективности производства. — Прикл. эконометрика, 2007, 4(8).