В. Г. Бурмистрова, А. А. Бутов, К. О. Раводин (Ульяновск, УлГУ). Система массового обслуживания с размножающимися заявками и «истощением» обслуживания.

В работе, представленной данным сообщением, осуществлено построение математической модели, которая может служить для описания таких явлений, как износ сложных (в том числе, составных) систем массового обслуживания заявок (например, в сети Интернет, для описания телефонных систем и т.п.). Также она является моделью систем, работающих в режиме таких перегрузок, как система иммунного надзора организма, подвергающаяся эпизодическим «атакам» и изнашиваемая ими. Модель применима для анализа работы механических систем с форсированными режимами эксплуатации (например, двигателей в самолетах или автомобилях).

Рассматриваемой здесь схемой является СМО с размножением заявок в очереди и с описанием форсированных режимов в терминах компенсаторов точечных процессов: $q_t = A_t + B_t - S_t$, где q_t — длина очереди заявок, ожидающих своего обслуживания, A_t — число поступивших в систему заявок, B_t — процесс размножения заявок «внутри» очереди ожидающих, S_t — обслуживание заявок.

Обслуживание в системе осуществляется m приборами. Система в каждый момент времени t загружена на уровне g_t (очевидно, выполняется $g_t \leqslant m$). При этом заявки поступают на обслуживание сразу же, как освободится прибор в системе: $g_t < m$. При этом заявки поступают на обслуживание мгновенно с освобождением приборов, только если «не пуста» очередь $q_t > 0$. Также они могут поступить на обслуживание в случае $g_t < m$, если очередь «пуста», но пришла новая заявка в систему ($\Delta A_t = 1$):

$$S_t = \int_0^t I\{q_{s-} > 0\}I\{g_{s-} = m\} dD_s + \int_0^t I\{q_{s-} = 0\}I\{g_{s-} < m\} dA_s.$$

Процесс A_t является стандартным пуассоновским с интенсивностью λ : его компенсатор $\widetilde{A}_t = \lambda t$. Компенсатор точечного процесса размножения B_t заявок в очереди (а не во всей системе, т. е. до обслуживания) $\widetilde{B}_t = \int_0^t Cq_s\,ds$. Процесс обслуживания описан в модели как точечный D_t с компенсатором $\widetilde{D}_t = \int_0^t K_s g_s\,ds$, где скорость обслуживания (ресурсный показатель) зависит от времени (онтогенетически) либо от числа обслуженных заявок.

В первом случае рассматривалось экспоненциальное «истощение» (онтогенетическое) $K_t=K_0e^{-\mu t}~(\mu>0)$, а во втором (при $0<\alpha<1$) истощение зависит от обслуживания: $K_t=K_0-\alpha\int_0^t K_{s-}\,dD_s$.

Справедливо следующее утверждение.

Теорема. Среднее значение **E** K_t ресурса K_t , зависящего от числа поступивших в систему заявок, во втором случае убывает («истощается») так же, как и в первом случае — онтогенетического экспоненциального истощения. При этом коэффициент истощения $\mu = \alpha \lambda$, т. е. пропорционален интенсивности поступающих заявок λ .

Доказательство теоремы проводится семимартингальными методами.

Работа выполнена при частичной поддержке РФФИ, проекты № 06–01–00338 и № 08–01–97009.