М. С. Тихов, Д. С. Криштопенко (Нижний Новгород, ННГУ). Тестирование монотонных функций эффективности по неполным выборкам в случае непрямых наблюдений.

Пусть $\{(X_i,Y_i,U_i),\ 1\leqslant i\leqslant n\}$ — стационарная последовательность независимых троек случайных величин с совместной функцией распределения F(x)G(y,u) и плотностью f(x)g(y,u) на \mathbf{R}^3 . Мы наблюдаем выборку $\mathcal{Y}^{(n)}=\{(W_i,Y_i),\ 1\leqslant i\leqslant n\}$ (непрямые наблюдения), где $W_i=I$ $\{X_i< U_i\}$ — индикатор события $\{X_i< U_i\}$. Требуется сделать выводы относительно вида функции эффективности $m(x)=\mathbf{E}\left(W|Y=x\right)$ по выборке $\mathcal{Y}^{(n)}$, а именно, проверить, является ли функция m(x) монотонной? Мы используем идеи работы [1], хотя там рассмотрена иная исходная модель. Наряду с классическими оценками Надарая—Ватсона, мы исследуем также kNN-оценки, что приводит к исключению плотности в знаменателе в предельной дисперсии исследуемых статистик.

Для оценки m(x) по выборке $\mathcal{Y}^{(n)}$ мы используем отношени

$$\widetilde{m}_n(x) = \sum_{i=1}^N W_i K_r \left(\frac{x - Y_i}{h_r} \right) / \sum_{i=1}^N K_r \left(\frac{x - Y_i}{h_r} \right),$$

где $K_r(x)\geqslant 0$ — ядерная функция (ядро). В качестве ширины окна просмотра мы рассматривали: 1) $h_r=h_r(n)$ — неслучайную последовательность, сходящуюся к нулю при $n\to\infty$; 2) h_r — случайную последовательность, определяемую k ближайшими соседями.

Определим

$$M_n^{-1}(m,t) = \frac{1}{nh_r} \int_0^1 \int_{-\infty}^t K_d\left(\frac{m(x) - u}{h_d}\right) du \, dx, \quad \widehat{m}_n^{-1}(t) = M_n^{-1}(\widetilde{m}_n, t),$$

если функция m=m(x) — строго возрастающая. Предполагается, что F(x) имеет компактный носитель на отрезке $[0,1]; K_d(x), h_d$ — ядро и ширина окна просмотра, отличные от $K_r(x), h_r$.

отличные от
$$K_r(x),\ h_r.$$
 Пусть $T_n=\int_0^1 (\widehat{m}_n^{-1}(\widetilde{m}_n(x))-x)^2\,dx.$ Показано, что

$$T_n \underset{n \to \infty}{\overset{p}{\to}} T = \int_0^1 \left(\int_0^1 I\left\{ m(v) \leqslant m(x) \right\} dv - x \right)^2 dx.$$

Основой проверки гипотезы о строгой монотонности является следующий результат.

Теорема. Пусть m(x) — непрерывная функция. Величина T равна нулю тогда и только тогда, когда функция эффективности строго возрастает на интервале [0,1].

Установлено, что статистика T_n асимптотически нормальна. Это дает возможность построить критерий для проверки гипотезы о строгой монотонности функции эффективности.

СПИСОК ЛИТЕРАТУРЫ

 Birke M., Dette H. Testing Strict Monotonicity in Nonparametric Regression. — Math. Meth. Statist., 2007, v. 16, № 2, p. 110–123.