А. С. Тихомиров (Великий Новгород, НовГУ). О свойствах алгоритма simulated annealing.

Рассмотрим множество $X = [0,1]^d$ с какой-либо обычной метрикой ρ . Пусть целевая функция $f \colon X \mapsto \mathbf{R}$ принимает максимальное значение в единственной точке x_* . Для отыскания точки x_* с заданной точностью $\varepsilon > 0$ используем алгоритм simulated annealing.

Следуя [1, с. 116], приведем общую схему моделирования марковского случайного поиска. Обозначение « $\zeta \leftarrow P(\cdot)$ » читается как «получить реализацию случайного вектора ζ с распределением P».

Алгоритм 1.

Шаг 1. ξ ₀ ← x; i ← 1.

Шаг 2. $\zeta_i \leftarrow P_i(\xi_{i-1}, \cdot)$.
Шаг 3. $\xi_i \leftarrow \begin{cases} \zeta_i, & \text{с вероятностью } p_i, \\ \xi_{i-1}, & \text{с вероятностью } 1-p_i, \end{cases}$ где $p_i = p_i(\zeta_i, \xi_{i-1}, f(\zeta_i), f(\xi_{i-1}))$.

Здесь x — начальная точка поиска. Переходная функция $P_i(x,\cdot)$ при любых i и $x \in X$ является вероятностной мерой в X. Если вероятности p_i задать следующим образом:

$$p_i = \left\{ \begin{array}{ll} 1, & \text{если } f(\zeta_i) \geqslant f(\xi_{i-1}), \\ \exp\{\beta_i(f(\zeta_i) - f(\xi_{i-1}))\}, & \text{если } f(\zeta_i) < f(\xi_{i-1}), \end{array} \right.$$

где $\beta_i\geqslant 0$ при всех i, то получим алгоритм simulated annealing (см. [1, с. 117]). Если же

$$p_i = \begin{cases} 1, & \text{если } f(\zeta_i) \geqslant f(\xi_{i-1}), \\ 0, & \text{если } f(\zeta_i) < f(\xi_{i-1}), \end{cases}$$

то получим марковский монотонный поиск (см. [1, с. 122]). Марковский монотонный поиск можно считать предельным случаем алгоритма simulated annealing с $\beta_i = +\infty$ при всех i.

В качестве характеристики скорости сходимости алгоритма используем число вычислений целевой функции, требуемое для достижения заданной точности ε решения задачи. Обозначим $B_{\varepsilon}(x_*)=\{x\in X\colon \rho(x_*,x)\leqslant \varepsilon\}$ и положим $\tau_{\varepsilon}=\min\{i\geqslant 0:$ $\xi_i \in B_arepsilon(x_*)\}.$ При выполнении $au_arepsilon$ шагов алгоритма simulated annealing значения функции f вычисляются $\tau_{\varepsilon}+1$ раз. Величину $\mathbf{E}\,\tau_{\varepsilon}$ назовем mpy doemkocmь w случайного поиска.

По известным теоретическим оценкам скорости сходимости (см. [1, с. 119]) алгоритм simulated annealing является медленным методом оптимизации. В лучшем случае зависимость требуемого числа вычислений целевой функции от ε имеет вид $O(1/\varepsilon^d)$, где d — размерность X. Такой же порядок зависимости от ε имеет простейший «чистый случайный поиск» (см. [1, с. 38]).

Пусть целевая функция f является невырожденной (см. [1, c. 127]). В [1] представлены такие варианты марковского монотонного поиска, у которых $\mathbf{E} \tau_{\varepsilon} = O(\ln^2 \varepsilon)$. В [2] показано, что если в алгоритме simulated annealing взять параметры этих поисков, то при достаточно больших значениях β_i получим $\mathbf{E} \, \tau_\varepsilon = O \, (\ln^2 \varepsilon)$. Таким образом, simulated annealing может быть быстрым методом поиска, если его хорошо организовать.

СПИСОК ЛИТЕРАТУРЫ

- 1. Zhiqljavsky A., Zilinskas A. Stochastic Global Optimization. Berlin: Springer-Verlag, 2008.
- 2. Тихомиров А. С. О трудоемкости алгоритма simulated annealing. Деп. в ВИНИ-ТИ, № 230-В2007, 19 с.