Ю. Б. Буркатовская, С. Э. Воробейчиков (Томск, Т-ПУ, ТГУ). Гарантированное обнаружение разладки процесса ARCH(p).

Рассматривается случайный процесс $\{x_t\}$ вида

$$x_t = \sigma_t \varepsilon_l$$
, $\sigma_t^2 = \lambda_0 + \lambda_1 x_{t-1}^2 + \dots + \lambda_p x_{t-n}^2$,

где $\{\varepsilon_t\}$ $(t\geqslant 1)$ — последовательность независимых одинаково распределенных случайных величин с $\mathbf{M}\,\varepsilon_t=0,\ \mathbf{M}\,\varepsilon_t^2=1$. В момент θ вектор параметров $\Lambda=(\lambda_0,\lambda_1,\ldots,\lambda_p)$ меняет свое значение с μ_0 на μ_1 , причем $\|\mu_0-\mu_1\|^2>\Delta$. Ставится задача по наблюдениям за процессом $\{x_t\}$ обнаружить момент разладки θ .

Поскольку значения параметров процесса до и после разладки неизвестны, в процедуре обнаружения разладки используются оценки неизвестных параметров, построенные на различных участках наблюдения процесса. Представим $\{x_t^2\}$ в виде $x_t^2 = \sigma_t^2 + \sigma_t^2(\varepsilon_t^2 - 1) = (\lambda_0 + \lambda_1 x_{t-1}^2 + \dots + \lambda_p x_{t-p}^2) + (\lambda_0 + \lambda_1 x_{t-1}^2 + \dots + \lambda_p x_{t-p}^2) B \eta_t$, где $\eta_t = \varepsilon_t^2 - 1$, а $B^2 = \mathbf{M} \, (\varepsilon_t^2 - 1)^2$. Введем обозначения:

$$y_{t-1}^2 = \max\{1, x_{t-1}^2, \dots, x_{t-p}^2\}, \quad z_t = \frac{x_t^2}{y_{t-1}^2}, \quad a_{t-1} = \left[\frac{1}{y_{t-1}^2}, \frac{x_{t-1}^2}{y_{t-1}^2}, \dots, \frac{x_{t-p}^2}{y_{t-1}^2}\right].$$

Случайный процесс $z_t=a_{t-1}\Lambda+a_{t-1}\Lambda B\eta_t$ обладает ограниченной дисперсией шумов. Для оценивания вектора параметров Λ этого процесса предлагается использовать модифицированный метод наименьших квадратов. Оценка параметров имеет вил

$$\Lambda^*(H) = \left(\sum_{l=n+1}^{\tau} v_t a_t^T z_{t+1}\right) A^{-1}(\tau), \quad A(k) = \sum_{t=n+1}^{k} v_t a_t^T a_t,$$

где n — первоначальный объем наблюдений, необходимый для компенсации неизвестной дисперсии шумов, $\tau = \inf\{k \geqslant 1 \colon \nu_{\min}(k) \geqslant H\}$ — случайный момент остановки, $\nu_{\min}(k)$ — минимальное собственное значение матрицы A(k). Выбор величины Γ_n и коэффициентов v_t гарантирует, что среднеквадратическое отклонение оценки $\Lambda^*(H)$ от истинного значения параметров ограничено сверху величиной $(H+p)/H^2$.

Для обнаружения момента разладки θ сначала определяются интервалы наблюдений $[\tau_{i-1}+1,\tau_i],\ i\geqslant 1,$ на каждом из которых вычисляются оценки Λ_i^* . Далее сравниваются оценки параметров на интервалах, номера которых отличаются на заданное натуральное число l>1. Если интервал $[\tau_{i-1}+1,\tau_i]$ не содержит момента разладки, то значение параметра Λ на этом интервале является постоянным и совпадает с μ_0 или $\mu_1.$ Таким образом, для некоторого номера i значения параметров на интервалах с номерами i и i+l отличаются на величину, не меньшую $\Delta.$ Решение о наличии разладки принимается, если $\|\Lambda_i^*-\Lambda_{i-l}^*\|$ превысит некоторый порог $\delta.$ Благодаря использованию гарантированных оценок вектора параметров Λ вероятности ложной тревоги и ложного спокойствия на каждом интервале наблюдений ограничены сверху и зависят от параметров процедуры $(H,\delta).$