М. Ю. Захаров, Е. А. Семенчин (Краснодар, ОАО «НПО «Промавтоматика»», КубГУ). О построении приближенного решения плоской задачи Дирихле для уравнения Пуассона методом точечных потенциалов.

Работа, представленная данным сообщением, посвящена дальнейшему развитию и обоснованию метода (галеркинского типа) решения краевых задач, применимому к определенному классу уравнений эллиптического типа и изложенному в [1]–[3]. Предлагаемый метод оказывается более удобным по сравнению с другими при построении решений задач для областей сложной геометрической формы с достаточно гладкими границами. Для такого типа областей построено приближенное решение первой краевой задачи для уравнения Пуассона, имеющей многочисленные приложения.

Пусть $Q \in \mathbf{R}^2$ — ограниченная односвязная область с границей $\partial Q \in C^2$, $Q^+ = \mathbf{R}^2 \setminus \overline{Q}$ — внешняя область, $\mathbf{x} = (x_1, x_2), \ \partial/\partial n_y$ (или $\partial/\partial n$) — производная по направлению внешней нормали к ∂Q в точке $\mathbf{y} \in \partial Q$.

Ограниченное множество точек \mathbf{x}^k , $k=1,2,\ldots$, принадлежащих области Q (или Q^+) и отделенных от границы ∂Q этой области, назовем последовательностью единственности для гармонических функций в Q (Q^+), если для любых гармонических в Q (Q^+) функций $f_1(\mathbf{x})$ и $f_2(\mathbf{x})$ из равенства $f_1(\mathbf{x}^k) = f_2(\mathbf{x}^k)$, $k=1,2,\ldots$, следует тождество $f_1(\mathbf{x}) \equiv f_2(\mathbf{x})$ в области Q (Q^+).

Рассмотрим первую краевую задачу

$$\Delta U(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in Q, \qquad U(\mathbf{x})|_{\partial Q} = g(\mathbf{x}).$$
 (1)

Пусть функции $f(\mathbf{x})$ и $g(\mathbf{x})$ таковы, что ее решение $U(\mathbf{x}) \in C^2(\overline{Q})$ ($f(\mathbf{x})$ и $g(\mathbf{x})$ с необходимостью принадлежат $C(\overline{Q})$ и $C^2(\partial Q)$ соответственно). Решение задачи (1) будем искать в виде ([4]):

$$AU(\mathbf{x}) = -\int_{Q} f(\mathbf{y}) \ln |\mathbf{x} - \mathbf{y}|^{-1} d\mathbf{y} - \int_{\partial Q} \left[g(\mathbf{y}) \frac{\partial}{\partial n_{y}} \ln |\mathbf{x} - \mathbf{y}|^{-1} - \frac{\partial U(\mathbf{y})}{\partial n} \ln |\mathbf{x} - \mathbf{y}|^{-1} \right] ds_{y}, \quad (2)$$

где $A=2\pi$, если $\mathbf{x}\in Q,\ A=\pi$, если $\mathbf{x}\in\partial Q,\ A=0$, если $\mathbf{x}\in Q^+,\ \partial U(\mathbf{y})/\partial n$ — плотность логарифмического потенциала простого слоя, подлежащая определению.

Искомую плотность представим в виде

$$\frac{\partial U(\mathbf{y})}{\partial n} = \left(\frac{\partial U(\mathbf{y})}{\partial n}\right)^{(0)} + C,\tag{3}$$

где $(\partial U(\mathbf{y})/\partial n)^{(0)}$ ортогональна единице в $L_2(\partial Q)$, C — неизвестная константа, подлежащая определению.

Для построения $(\partial U(\mathbf{y})/\partial n)^{(0)}$ рассмотрим обратную задачу: найти $(\partial U(\mathbf{y})/\partial n)^{(0)}$ из интегрального уравнения, вытекающего из (2), (3):

$$\int_{\partial O} \left(\frac{\partial U(\mathbf{y})}{\partial n} \right)^{(0)} \ln |\mathbf{x}^m - \mathbf{y}|^{-1} ds_y = W(\mathbf{x}^m), \tag{4}$$

$$W(\mathbf{x}^m) = \int_Q f(\mathbf{y}) \ln |\mathbf{x}^m - \mathbf{y}|^{-1} d\mathbf{y} + \int_{\partial q} g(\mathbf{y}) \frac{\partial}{\partial n_y} \ln |\mathbf{x}^m - \mathbf{y}|^{-1} ds_y - C \int_{\partial q} \ln |\mathbf{x}^m - \mathbf{y}|^{-1} ds_y,$$

здесь $\mathbf{x}^m \in Q^+ \ (m=1,2,\ldots)$ — последовательность единственности для гармонических функций в $Q^+.$

Приближенное решение $(\partial U(\mathbf{y})/\partial n)_N^{(0)}$ уравнения (4) будем искать в виде

$$\left(\frac{\partial U(\mathbf{y})}{\partial n}\right)_{N}^{(0)} = \sum_{k=1}^{N} c_k \alpha_k(\mathbf{y}),\tag{5}$$

где

$$\alpha_k(\mathbf{y}) = \ln |\mathbf{x}^k - \mathbf{y}|^{-1} - J_k, \quad \mathbf{y} \in \partial Q, \quad J_k = \int_{\partial Q} \ln |\mathbf{x}^k - \mathbf{y}|^{-1} \, ds_y / |\partial Q|,$$

 \mathbf{x}^k из (4), $k=1,\ldots,N$. Из (3), (5) следует, что

$$\left(\frac{\partial U(\mathbf{y})}{\partial n}\right)_{N} = \left(\frac{\partial U(\mathbf{y})}{\partial n}\right)_{N}^{(0)} + C.$$

Здесь $(\partial U(\mathbf{y})/\partial n)_N$ — приближение плотности $\partial U(\mathbf{y})/\partial n$. Подставляя $(\partial U(\mathbf{y})/\partial n)_N$ в (2), найдем приближенное решение $U_N(\mathbf{x})$ задачи (1).

Условия существования и единственности точного и приближенного решений (4), сходимость в $L_2(\partial Q)$ при $N \to \infty$ приближенного решения к точному и способ определения коэффициентов c_k в (5) изложены в [5].

Из приведенных выше соотношений и свойств гармонических функций вытекают следующие результаты.

1. Если в (1) возмущены либо правая часть $f(\mathbf{x})$, либо функция $g(\mathbf{x})$ из граничного условия, то оценки (сверху) норм разностей невозмущенного $U(\mathbf{x})$ и возмущенного $\widetilde{U}(\mathbf{x})$ решений задачи (1) имеют вид

$$||U(\mathbf{x}) - \widetilde{U}(\mathbf{x})||_{C(\overline{O})} \leqslant 2\delta_1 B_2 / \pi, \quad ||U(\mathbf{x}) - \widetilde{U}(\mathbf{x})||_{C(\overline{O})} \leqslant \delta_2,$$
 (6)

где $B_2 = \max_{x \in \overline{Q}} \|\ln |\mathbf{x} - \mathbf{y}|^{-1}\|_{L_2(Q)}$; δ_1 и δ_2 — оценки сверху норм разностей $\|f(\mathbf{x}) - \widetilde{f}(\mathbf{x})\|_{L_2(Q)} \leqslant \delta_1$, $\|g(\mathbf{x}) - \widetilde{g}(\mathbf{x})\|_{C(\partial Q)} \leqslant \delta_2$, $\widetilde{f}(\mathbf{x})$ — возмущенная правая часть в (1), $\widetilde{g}(\mathbf{x})$ — возмущенная функция из граничного условия в (1).

Обратим внимание, что из (6) следует устойчивость получаемого решения (1) при указанных выше допущениях.

- 2. Величина C из (3) имеет вид $C = \int_Q f(\mathbf{y}) \, d\mathbf{y} / |\partial Q|$.
- 3. Если $(\partial U(\mathbf{y})/\partial n)^{(0)}, (\partial U(\mathbf{y})/\partial n)_N^{(0)} \in L_2(\partial Q)$, то $U_N(\mathbf{x}) \to U(\mathbf{x})$ в \overline{Q} равномерно при $N \to \infty$.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Лежнев В. Г.* Аппроксимация обратных задач Ньютонова потенциала. Численные методы анализа. М.: МГУ, 1997, с. 52–67.
- 2. Лежнев В.Г. Метод решения краевых задач уравнения Пуассона. Численный анализ: методы и алгоритмы. М.: МГУ, 1998, с. 36–44.
- 3. Захаров М. Ю. Обратная задача определения плотности логарифмического потенциала двойного слоя и применение к решению краевой задачи. Численный анализ: теория, приложения, программы. М.: МГУ, 1999, с. 113–120.
- 4. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1987.
- 5. Захаров М.Ю. Внешняя обратная задача определения плотности логарифмического потенциала простого слоя. Численный анализ: методы и алгоритмы. М.: МГУ, 1998, с. 45–52.