А. В. Кочулимов, В. Л. Леонтьев (Ульяновск, УлГУ). О методе конечных элементов, связанном с использованием двумерных ортогональных финитных функций, в задаче теплопроводности.

Рассматривается метод конечных элементов теории теплопроводности, основанный на применении ортогональных финитных функций (ОФФ) второй степени [1], связанных с треугольными сетками, и условия стационарности

$$\delta R(T, \overline{G})/2 = \int_{S} [\delta T \operatorname{div} \overline{G} + (\overline{G} - \operatorname{grad} T) \bullet \delta \overline{G})] dS$$

$$+ \int_{\gamma_{1}} (T - T_{\gamma}) \delta G_{n} d\gamma - \int_{\gamma_{2}} (G_{n} - G_{n_{\gamma}}) \delta T d\gamma = 0$$
(1)

смешанного функционала

$$\begin{split} R(T,\overline{G}) &= \int_{S} [T \operatorname{div} \overline{G} + (\overline{G} - \operatorname{grad} T) \bullet \overline{G})] \, dS \\ &+ \int_{\gamma_{1}} (T - 2T_{\gamma}) G_{n} \, d\gamma - \int_{\gamma_{2}} (G_{n} - 2G_{n_{\gamma}}) T \, d\gamma = 0. \end{split}$$

Здесь S — исследуемая область; γ_1 , γ_2 — части ее границы, объединение которых составляет всю границу; T — температура точек области S; \overline{G} — градиент температуры; $G_n = \overline{G} \bullet \overline{n}$ — проекция \overline{G} на внешнюю нормаль \overline{n} к границе области S; T_γ и $G_{n\gamma}$ — заданные соответственно на γ_1 и γ_2 значения T и G_n ; \bullet — знак скалярного произведения. Условие (1) в силу независимости и произвольности вариаций δT , $\delta \overline{\Gamma}$ равносильно смешанной системе уравнений

$$\operatorname{div} \overline{G} = 0$$
, $\overline{G} - \operatorname{grad} T = 0$ ($\iff \Delta T = 0$) (S),

содержащей производные только первого порядка, и краевым условиям $T=T_{\gamma}(\gamma_1)$, $G_n=G_{n_{\gamma}}(\gamma_2)$. Метод начинается с построения в области S сетки, содержащей N узлов, расположенных в вершинах треугольников сетки и в серединах их сторон. Подстановка в (1) линейных комбинаций

$$\tilde{T} = \sum_{i=1}^{N} T_i \varphi_i, \quad \tilde{G}_{(k)} = \sum_{i=1}^{N} G_{(k)i} \varphi_i, \qquad k = 1, 2,$$
(2)

аппроксимирующих точные решения для T и компонент вектора \overline{G} двумерными ОФФ $\varphi_i(x,y)$ [1], связанными с сеткой, приводит к глобальной системе сеточных уравнений с неизвестными T_i , $G_{(k)i}$ — узловыми значениями приближенных решений. ОФФ второй степени $\varphi_i(x,y)$ [1] получены на основе обобщения ОФФ первой степени [2]. Аппроксимации (2) порождают новые треугольные конечные элементы, определяемые лагранжевым базисом, связанным с конечным элементом и состоящим из шести ОФФ $\varphi_i(x,y)$. В силу ортогональности функций $\varphi_i(x,y)$ можно исключить $G_{(1)i}$, $G_{(2)i}$ из системы уравнений и сократить размеры ее матрицы с $3N \times 3N$ до $N \times N$. Таким образом, предлагаемый метод позволяет получать приближенные решения как для температуры, так и для ее градиента, имеющие точность и гладкость одного порядка, с минимальными вычислительными затратами.

СПИСОК ЛИТЕРАТУРЫ

1. *Леонтьев В. Л., Кочулимов А. В.* Действительные ортогональные финитные функции второй степени на треугольных сетках. — Труды Международной конференции по логике, информатике, науковедению КЛИН-2007 (Ульяновск, 17—18.05.2007), т. 4. Ульяновск: УлГТУ, 2007, с. 163—168.

2. *Леонтьев В. Л.* Об ортогональных финитных функциях и о численных методах, связанных с их применением. — Обозрение прикл. и промышл. матем., 2002, т. 9, в. 3, с. 497–504.