О. В. Русаков (Санкт-Петербург, СПбГУ). Суммы независимых пуассоновских процессов случайного индекса: временная зависимость как проекция.

Пусть $(\xi) = \dots, \xi_{-1}, \xi_0, \xi_1, \dots$ — некоторая последовательность случайных величин; $\Pi(s) = \Pi_{\lambda}(s), s \in \mathbf{R}$ — пуассоновский случайный процесс с интенсивностью $\lambda > 0$, независимый от последовательности (ξ) .

О п р е д е л е н и е 1. Процессом пуассоновского случайного индекса $\psi(s) = \psi_{\lambda}(s)$ назовем субординацию для последовательности (ξ) , выполненную посредством пуассоновского процесса Π , т. е.

$$\psi(s) = \xi_{\Pi(s)}, \qquad s \in \mathbf{R}. \tag{1}$$

Последовательность (ξ) назовем формирующей, процесс Π — управляющим, а полученный процесс ψ — процессом ΠC И.

Рассмотрим случай, когда случайные величины управляющей последовательности независимы, одинаково распределены, имеют нулевое среднее и единичную дисперсию. В этом случае, как нетрудно убедиться, автоковариация процесса ПСИ убывает экспоненциально, $\operatorname{cov}(\psi(s_1), \psi(s_2)) = \exp\{-\lambda | s_1 - s_2| \}$.

Пусть $(\psi_j(s))$, $j \in \mathbb{N}$ — независимые копии процесса $\psi(s)$, заданного определением 1, в частности, все управляющие пуассоновские процессы независимы и одной интенсивности, и все формирующие последовательности независимы. Рассмотрим нормированные суммы процессов случайного индекса

$$Z_N(t,s) = \frac{1}{\sqrt{N}} \sum_{s=1}^{[Nt]} \psi_j(s), \qquad s \in \mathbf{R}, \quad t \geqslant 0,$$
 (2)

где квадратные скобки обозначают целую часть.

Теорема 1. Конечномерные распределения процесса $Z_N(t,s)$, определенного (2), сходятся при $N \to \infty$ к конечномерным распределениям центрированного гауссовского поля Z(t,s) с ковариационной функцией

$$\min\{t_1, t_2\} \exp\{-\lambda |s_1 - s_2|\}, \qquad t_1, t_2 \geqslant 0, \quad s_1, s_2 \in \mathbf{R}. \tag{3}$$

О п р е д е л е н и е 2. Поле Z(t,s) назовем полем Винера-Орнштейна-Уленбека (ВОУ), так как оно вдоль времени t (которое мы будем называть внешним или ведущим временем) ведет себя как винеровский процесс, а вдоль времени s (которое мы будем называть внутренним временем) ведет себя как процесс Орнштейна-Уленбека — стационарный гауссовский марковский процесс.

В частном случае Z(1,s) как функция от $s\in \mathbf{R}$ представляет собой стандартный процесс Орнштейна—Уленбека с единичной дисперсией и коэффициентом вязкости λ . Наиболее часто используемым представлением для процесса Орнштейна—Уленбека является уравнение Ланжевена, которое мы приводим в виде его решения, заданного на положительной полуоси,

$$U(s) = U(0)e^{-\lambda s} + \sqrt{2\lambda} \int_0^s e^{-\lambda(s-u)} dB(u), \qquad s \geqslant 0,$$
(4)

где: B(u) $(u\geqslant 0)$ — стандартное броуновское движение; $U(0)\in \mathcal{N}\{0,1\}$ — не зависящая от B(u) стандартная нормальная случайная величина; $\lambda>0$ — параметр вязкости.

Зафиксируем s>0 и проанализируем формулу (4). Видно, что начальное значение U(0) умножается на постоянную, меньшую единицы, что означает *сжатие* распределения начального значения. Величина U(s) представляется в виде суммы двух

независимых нормальных величин, необходимая корреляция обеспечивается множителем $\exp\{-\lambda s\}$, а вклад в общую единичную дисперсию для U(s), исходящий от начального значения U(0), равен $\exp\{-2\lambda s\}$.

Иная картина наблюдается в случае, когда процесс Орнштейна—Уленбека получен в результате суммирования независимых одинаково распределенных процессов ПСИ. Для каждого N переставим процессы ПСИ в порядке убывания по мере наступления первого скачка у ведущего пуассоновского процесса, соответственно. Условия теоремы 1 остаются в силе, и случайная предельная функция имеет также распределение поля ВОУ. В переставленном случае для $Z_N(t,s)$ и Z(t,s) оставим прежние обозначения. Обозначим при фиксированном s>0: $W^0(t)=Z(t,0),\,W^s(t)=Z(t,s),\,t\in[0,1],$ соответствующие сечения поля ВОУ, которые, очевидно, по t представляют собой броуновские движения. В момент t=1 значения $W^0(1)=Z(1,0),\,W^s(1)=Z(1,s)$ вдоль времени s являются (по распределению) значениями процесса Орнштейна—Уленбека U(0) и U(s), соответственно.

Теорема 2. При $N \to \infty$ верны следующие предельные соотношения.

А. Нормированные суммы (2) переставленных по первому скачку процессов случайного индекса сходятся в смысле конечномерных распределений к полю Винера-Орнитейна-Уленбека Z(t,s).

Б. Для фиксированного s>0 величины $Z_N(t,0)$ и $Z_N(t,s)$, $t\in [0,1]$, сходятся совместно в смысле конечномерных распределений к броуновским движениям $W^0(t)$ и $W^s(t)$, причем

$$W^{s}(t) = W^{0}(\min\{t, \exp\{-\lambda s\}\}) + 1\{t \ge \exp\{-\lambda s\}\} (W^{s}(t) - W^{s}(\exp\{-\lambda s\})),$$

и приращение $W^s(t) - W^s(\exp\{-\lambda s\})$ при $t \geqslant \exp\{-\lambda s\}$ не зависит от $W^0(v)$, $v \in [0,1]$.

Заметим, что Z(1,0) и Z(1,s) являются значениями процесса Орнштейна—Уленбека U(0) и U(s), соответственно. Теорема 2 дает представление

$$U(0) = W^{0}(\exp\{-\lambda s\}) + (W^{0}(1) - W^{0}(\exp\{-\lambda s\})),$$

$$U(s) = W^{0}(\exp\{-\lambda s\}) + (W^{s}(1) - W^{s}(\exp\{-\lambda s\})),$$
(5)

причем приращения $W^0(1) - W^0(\exp{\{-\lambda s\}})$ и $W^s(1) - W^s(\exp{\{-\lambda s\}})$ независимы.

Из представления (5) следует вывод, что в случае суммирования независимых процессов ПСИ вклад в общую единичную дисперсию для U(s), исходящий от начального значения U(0), равен $\exp\{-\lambda s\}$, что в квадратный корень отличается от канонического представления в форме уравнения Ланжевена (4). Представление (5) основывается на *проекции* части траектории броуновского движения W^0 , формирующего начальное значение процесса Орнштейна–Уленбека U(0), на внутреннее время.