М. М. М у с и н (Москва, МГУ). Статистический тест для графа преимущественного присоединения.

Область случайных графов со степенным распределением степеней вершин активно развивается в последнее десятилетие. Одной из ключевых моделей данных графов является граф преимущественного присоединения. Мы получили статистический тест для верификации модели графа преимущественного присоединения, основанный на работе [1] и величине среднего диаметра, использованной в работе [2]. Отметим, что данное исследование проводится в русле работ по верификации моделей графов со степенным распределением степеней вершин, выделенным в работе [3].

О п р е д е л е н и е 1 (ср. [1]). Пусть m — натуральное число. Для m=1 зададим граф преимущественного присоединения G_1^n по индукции. Для n=1 пусть G_1^1 состоит из одной вершины и одной петли. При $n=2,3,\ldots$ граф G_1^n получается из графа G_1^{n-1} добавлением вершины номер n и ребра между ней и вершиной со случайным номером t_n , имеющим распределение

$$\mathbf{P}\{t_n = l\} = \begin{cases} d_l^n/(2n-1), & 1 \leqslant l \leqslant n-1, \\ 1/(2n-1), & l = n, \end{cases}$$

где d_l^n обозначает степень вершины номер l в графе G_1^{n-1} . Для $m=2,3,\ldots$ граф G_m^n получается из графа G_1^{mn} объединением вершин $1,2,\ldots,m$ графа G_1^{mn} в вершину 1 графа G_m^n , вершин $m+1,m+2,\ldots,2m$ в вершину 2 и т. д.

О п р е д е л е н и е 2 (ср. [2]). $\mathit{Средним диаметром}$ AvgDiam(G) называется расстояние между двумя вершинами графа G, выбранными случайно и равновероятно

Пусть H_0 — гипотеза о совпадении распределения данного случайного графа G с распределением графа преимущественного присоединения G_m^n .

Теорема. Для m,n>3 и уровня значимости α имеет место следующая оценка:

$$\mathbf{P}\left\{\operatorname{AvgDiam}(G) < \frac{\ln n}{\ln \ln n} - b(m, n, \alpha) \middle| H_0\right\} \leqslant \alpha,$$

где

$$b(m,n,\alpha) = \left(\ln \ln n + \frac{2\ln(4m)}{\ln \ln n} \ln n - 2\ln \frac{\alpha}{4}\right) \frac{1}{\ln \ln n + 2\ln(4m)}.$$

Работа выполнена при частичной поддержке РФФИ, проект № 07–01–00373.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bollobas B., Riordan D. The diameter of a scale-free random graph. Combinatorica, 2004, v. 24, \mathbb{N} 1, p. 5–34.
- Kumar R., Novak J., Tomkins A. Structure and evolution of online social networks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. N.Y.: ACM, 2006, p. 611–617.
- 3. Mitzenmacher M. The future of power law research. Internet Math., 2006, v. 2, N_2 4, p. 552–534.