С. Я. Шатских (Самара, СамГУ). Условные Е. А. Савинов, квантили устойчивых распределений в гильбертовом пространстве.

Как известно, не все устойчивые распределения вероятностей имеют математические ожидания. Поэтому при решении многих задач математической статистики вместо условных моментов для таких распределений естественно рассматривать условные медианы и квантили. В настоящем сообщении мы решаем задачу построения условных квантилей для устойчивых эллиптически контурированных распределений в гильбертовом пространстве.

Рассмотрим вещественное сепарабельное гильбертово пространство Н со скалярным произведением $\langle\cdot,\cdot\rangle$ и борелевской σ -алгеброй \mathcal{B} . Пусть $\mu_{\alpha}^{B}\{\cdot\}$ — устойчивая эллиптически контурированная вероятностная мера на $\{\mathbf{H},\mathcal{B}\}$ с характеристическим функционалом $\Psi(y) = \exp\{-\langle Bh, h \rangle^{\alpha/2}\}, h \in \mathbf{H},$ где B — линейный самосопряженный положительно определенный ядерный оператор и $\alpha \in (0,2]$.

Введем в прстранстве Н новое скалярное произведение и соответствующую норму $|\cdot|_{-}^{2} = \langle \cdot, \cdot \rangle_{-} := \langle B \cdot, \cdot \rangle.$

Пусть $\{f_i\}_{i=1}^{\infty}$ — произвольный ортонормированный (относительно исходного скалярного произведения $\langle \cdot, \cdot \rangle$) базис в пространстве **H**, минимальный относительно введенной нормы. Это означает, что любой элемент f_i не принадлежит замыканию (по норме $|\cdot|_{-}$) линейной оболочки всех остальных элементов этого базиса (см. [1]).

Рассматривая линейные функционалы $f_i(h) := \langle f_i, h \rangle$ $(h \in \mathbf{H}, j = 1, 2, \ldots)$ в качестве случайных величин, введем наименьшую σ -алгебру \mathcal{B}_{ni} подмножеств пространства **H**, относительно которой измеримы все те $f_i(h)$, у которых $i \neq i$.

В следующей теореме мы даем формулу для условного распределения случайной величины $f_i(h)$ относительно σ -алгебры \mathcal{B}_{ni} .

Теорема. Для любого минимального (относительно нормы $|\cdot|_{-}$) ортонормированного базиса $\{f_j\}_{j=1}^\infty$ пространства ${\bf H}$ имеет место равенство

$$\mu_{\alpha}^{B}\{f_{i}(h) \leqslant x | \mathcal{B}_{ni}\} = \Phi\left(\frac{x - m_{i}^{(2)}(h)}{s_{\infty}(h) | f_{i} - f_{i}^{*}|_{-}}\right),$$

где $m_i^{(2)}(h)=\mathbf{M}_2\{f_i(h)|\mathcal{B}_{ni}\}$ есть условное математическое ожидание $f_i(h)$ относительно гауссовской меры $\mu_2^B\{\cdot\}; f_i^*$ — проекция (относительного скалярного произведения $\langle\cdot,\cdot\rangle_-$) элемента f_i на замыкание (по норме $|\cdot|_-$) линейной оболочки всех остальных элементов базиса; $s_\infty^2(h) := \lim_{n\to\infty} n^{-1} \langle (\pi_n B\pi_n)^{-1} \pi_n h, \pi_n h \rangle$, где π_n — семейство $\langle\cdot,\cdot\rangle$ -ортопроекторов пространства H на подпространства $\mathbf{H}_n := \mathrm{span}\,\{f_1,\ldots,f_n\},\, n=1,2,\ldots;\,\Phi(\cdot)$ —стандартное гауссовское распределение $\mu a \mathbf{R}^1$.

Доказанная теорема позволяет определить условную квантиль $q_{i|\mathcal{B}_{n,i}}^{(p)}(h)$ случайной величины $f_i(h)$ относительно σ -алгебры \mathcal{B}_{ni} посредством следующего равенства:

$$\Phi\left(\frac{q_{i|\mathcal{B}_{ni}}^{(p)}(h) - m_i^{(2)}(h)}{s_{\infty}(h)|f_i - f_i^*|_{-}}\right) = p, \qquad p \in (0, 1).$$

Таким образом, $q_{i|\mathcal{B}_{ni}}^{(p)}(h)=m_i^{(2)}(h)+s_\infty(h)|f_i-f_i^*|_-\Phi^{-1}(p)$. В частности, для условной медианы $p=1/2, \, \Phi^{-1}(1/2)=0$ и $q_{i|\mathcal{B}_{ni}}^{(1/2)}(h)=m_{i}^{(2)}(h).$ В том случае, когда базис $\{f_{n}\}_{n=1}^{\infty}$ состоит из собственных векторов оператора B:

 $Bf_n=\lambda_n^2f_n,\ n=1,2,\ldots$, выполняются равенства $m_i^{(2)}(h)=0,\ |f_i|_-=\lambda_i,\ f_i^*=0,$ $q_{i|\mathcal{B}_{ni}}^{(p)}(h)=s_\infty(h)\lambda_i\Phi^{-1}(p).$ З а м е ч а н и е. В работе [2] дано представление условного математического

ожидания $m_i^{(2)}(h)$ на основе аффинных измеримых функционалов в пространстве

 $\{{\bf H}, \mathcal{B}, \mu_2^B\}$. Более подробное описание свойств случайной величины $s^2_\infty(h)$ приведено в статье [3].

СПИСОК ЛИТЕРАТУРЫ

- 1. Гохберг И. Ц., Крейн М. Г. Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве. М.: Наука, 1965.
- 2. Shatskikh S. Ya. Conditional quantiles of Gaussian measures in Hilbert space. J. Math. Sci., 1998, v. 89, N^0 5, p. 1553–1558.
- 3. Шатских C.Я. Усиленный закон больших чисел для схемы серий условных распределений эллиптически контурированных мер. Теория вероятн. и ее примен., 2005, т. 50, в. 2, с. 292–311.