И. Е. Тананко, Н. П. Фокина (Саратов, СГУ). Исследование сетей массового обслуживания с централизованным управлением маршрутизацией и задержкой информации.

Пусть N — однородная замкнутая сеть массового обслуживания с L системами массового обслуживания $S_i,\ i=1,2,\ldots,L$, типа M|M|1 с интенсивностями обслуживания μ_i . Топология сети определяется матрицей смежности $W=(w_{ij}),\ i,j=1,2,\ldots,L$, соответствующего сети ориентированного графа. Пусть T — множество возможных маршрутных матриц, соответствующих заданной топологии. Тогда матрица $\Theta\in T$, если $\theta_{ij}=0$ при $w_{ij}=0$ и $\theta_{ij}\geqslant 0$ при $w_{ij}=1$. В сети применяется централизованный способ управления ее эволюцией путем использования внешней системой управления различных маршрутных матриц $\Theta\in T$ в течение интервалов времени фиксированной длительности φ . Целью управления является повышение качества функционирования сети, определяемого значением вероятности выбранного состояния. Обозначим X множество состояний сети N, $\mathbf{s}=(s_1,s_2,\ldots,s_L)$ есть состояние сети, где s_i — число требований в системе S_i .

В процессе эволюции сети N в моменты времени $t_k = k\varphi, k = 1, 2, \ldots$, в систему управления передается информация о текущем состоянии сети $\mathbf{s}(t_k) \in X$. Предполагается, что общее время, затрачиваемое на процессы передачи информации о состоянии сети, принятия решения о маршрутной матрице и передачи решения о маршрутизации в сеть, фиксировано и равно $\delta > 0$. В зависимости от состояния сети $\mathbf{s} = \mathbf{s}(t_k)$ в момент t_k в последующий интервал времени $[t_k + \delta, t_{k+1} + \delta)$ в сети используется маршрутная матрица $\Theta(\mathbf{s}) \in T$. Фрагмент процесса функционирования сети с фиксированной маршрутной матрицей называется makmom. Используемые маршрутные матрицы обеспечивают максимум вероятности пребывания сети N в выбранном состоянии на момент завершения такта.

Предполагается, что функционирование сети N полностью определяется модельными цепями Маркова $\{C^{(\mathbf{s})}, \mathbf{s} \in X\}$, описывающими эволюцию сети соответственно в течение тактов. Параметры и характеристики цепи $C^{(\mathbf{s})}$ зависят от маршрутной матрицы $\Theta(\mathbf{s})$ и интенсивностей обслуживания $\mu_i, i=1,2,\ldots,L$.

Разработан метод анализа сети N с данным принципом управления [1], позволяющий получать стационарное распределение вероятностей и основные стационарные характеристики, проведено исследование ее эволюции при изменении параметров φ и δ .

СПИСОК ЛИТЕРАТУРЫ

1. Тананко И.Е., Фокина Н.П. Метод анализа сетей массового обслуживания с централизованным управлением маршрутизацией и задержкой информации. — В сб.: Компьютерные науки и информационные технологии. Материалы Международной научной конференции. Саратов: Изд-во Саратовского ун-та, 2009, с. 182–185.