Е. А. К о л о м ы ц е в а (Таганрог, ТГПИ). ARG-деформации поверхностей в римановом пространстве.

Пусть ${\bf R}^3$ — трехмерное риманово пространство с координатами y^β ($\beta=1,2,3$) и метрикой $ds^2=a_{\beta\gamma}\,dy^\beta\,dy^\gamma$, где $a_{\beta\gamma}\in C^{2,\alpha},\ 0<\alpha<1$. Пусть далее F_0^2 — поверхность положительной внешней кривизны в ${\bf R}^3$, заданная уравнениями $y^\beta=f^\beta(x^1,x^2),\ (x^1,x^2)\in D$, где $f^\beta\in C^{3,\alpha},\ 0<\alpha<1$. Будем считать, что край ∂F_0^2 принадлежит классу $C^{2,\alpha},\ 0<\alpha<1$.

Рассмотрим бесконечно малую деформацию поверхности F_0^2 , переводящую ее в поверхность F_ε^2 , заданную уравнениями $y_\varepsilon^\beta = f^\beta(x^1,x^2) + \varepsilon z^\beta(x^1,x^2)$, где ε — малый параметр, $\varepsilon \in \{-\varepsilon_0,\varepsilon_0\}$, $\varepsilon_0>0$, z^β — тензорное поле смещения точек поверхности F_0^2 при ее деформации.

Бесконечно малую деформацию $\{F_{\varepsilon}^2\}$ поверхности F_0^{β} называют ARG-деформацией [1], если выполняются условия:

- а) вариация $\delta(d\sigma)$ элемента площади $d\sigma$ поверхности F_0^2 удовлетворяет соотношению $\delta(d\sigma)=2\lambda Hcd\sigma$, где λ заданное число, называемое коэффициентом рекуррентности, H>0— средняя кривизна поверхности F_0^2 , $c=a_{\beta\gamma}z^{\beta}n^{\gamma}$ нормальная компонента тензорного поля z^{β} , n^{β} поле единичных векторов нормали к поверхности F_0^2 ;
- б) для любой точки поверхности F_0^β ее единичный вектор нормали n^β , параллельно перенесенный в ${\bf R}^3$ в смысле Леви–Чивита в направлении тензора z^β в соответствующую точку поверхности F_ε^2 , совпадает с вектором нормали n_ε^β к F_ε^2 в этой точке

Зададим на краю поверхности F_0^2 отличное от нуля векторное поле l^β класса $C^{1,\alpha},\ 0<\alpha<1$. Будем рассматривать бесконечно малые ARG-деформации поверхности F_0^2 , подчиненные на краю ∂F_0^2 условию $a_{\beta\gamma}l^\beta z^\gamma=0$. Это условие назовем условием обобщенной втулочной связи.

Будем говорить, что поверхность F_0^2 является λ -жесткой в отношении ARG-деформаций, если для заданного коэффициента рекуррентности λ поверхность допускает только тождественные ARG-деформации с полем смещения $z^\beta \equiv 0$, в противном случае поверхность будем называть λ -нежесткой.

Теорема. Пусть F_0^2 — односвязная поверхность положительной внешней кривизны в римановом пространстве \mathbf{R}^3 . Пусть далее касательная составляющая l_{τ}^{β} векторного поля l^{β} вдоль края ∂F_0^2 сопряжена с направлением края ∂F_0^2 поверхности F_0^2 , $a_{\beta\gamma}l^{\beta}z^{\gamma}\neq 0$, и нормальная составляющая l_n^{β} векторного поля l^{β} представима в виде $l_n^{\beta}=l^3n^{\beta}$, где $l^3<0$. Тогда при всех λ_0 , за исключением точно счетного числа значений λ_i , $i=1,2,\ldots$, таких, что $\lambda_i>-1$, $\lambda_i\to\infty$ при $i\to\infty$, поверхность F_0^2 при условии обобщенной втулочной связи является λ -жесткой в отношении ARG-деформаций с полем z^{β} класса $C^{1,\alpha}$, $0<\alpha<1$.

СПИСОК ЛИТЕРАТУРЫ

1. Fomenko V. T. ARG-deformations of a hypersurface with a boundary in a Riemannian space. — Tensor, 1993, v. 54.