Ю. В. Косолапов, Е. С. Чекунов (Ростов-на-Дону, ЮФУ). Применение \mathcal{F} -метрики в симметричных кодовых криптосистемах.

Задача теоретического и экспериментального исследования методов защиты информации, основанных на теории помехоустойчивого кодирования, является актуальной [1]–[3]. Интерес к использованию помехоустойчивых кодов, в частности, обусловлен возможностью построения комплексных методов защиты. Такие методы защиты, например, построены и исследованы в [1], [4], где кодовое защумление одновременно применяется для защиты информации от vacmuvnou технической утечки и внешних помех. Для защиты информации от vacmuvnou технической утечки конструктивно подходят симметричные кодовые криптосистемы [4], [5]. Одной из стойких симметричных кодовых криптосистем является криптосистема Стройка-Тилбурга [2], обладающая, однако, практическими ограничениями: большой объем ключа (порядка $(2n-k)|\mathbf{F}|^{n-k}$ элементов поля \mathbf{F}) и нет возможности одновременно бороться с помехами в канале. Поэтому актуальной является задача построения симметричных кодовых криптосистем без таких ограничений. В работе, представленной данным сообщением, строится симметричная криптосистема с использованием кодов в \mathcal{F} -метриках [3].

Пусть $G_{k\times n}$ — порождающая матрица кода C (над полем $\mathbf F$) в $\mathcal F$ -метрике с $\mathcal F$ -расстоянием $d_{\mathcal F}$; $D_{\mathcal F}$ — быстрый алгоритм декодирования кода C в $\mathcal F$ -метрике, исправляющий до $t=\lfloor (d_{\mathcal F}-1)/2\rfloor$ $\mathcal F$ -ошибок (см., например, [3]); $S_{k\times k}$ — случайная невырожденная матрица; $P_{n\times n}$ — случайная перестановочная матрица. Секретным ключом криптосистемы является четверка $K=(S_{k\times k},G_{k\times n},P_{n\times n},D_{\mathcal F})$, объем K равен $k^2+n(k+1)$ элементов поля $\mathbf F$. Пусть $\overline m$ — информационное сообщение, $\overline z$ — вектор $\mathcal F$ -ошибок, выбранный случайным образом так, чтобы выполнялось условие

$$w_{\mathcal{F}}(\overline{z}) = t_1 < t, \quad w_{\mathcal{H}}(\overline{z}) \geqslant n/2,$$
 (1)

где $w_{\mathcal{H}}(\overline{z}), w_{\mathcal{F}}(\overline{z})$ — вес Хэмминга и \mathcal{F} -вес вектора ошибок \overline{z} , соответственно.

Шифрование: $\overline{c} = \overline{m} \, S_{k \times k} \, G_{k \times n} \, P_{n \times n} + \overline{z}$.

Расшифрование: $\overline{y} = D_{\mathcal{F}}(\overline{c} P_{n \times n}^{-1}), \overline{m} = \overline{y} S_{k \times k}^{-1}.$

Стойкость предложенной криптосистемы к статистической атаке на шифрограмму, описанной в [2], основана на том, что к кодовому слову добавляется вектор \bar{z} , удовлетворяющий условию (1). Такие вектора ошибок можно генерировать в процессе шифрования и нет необходимости хранить, как это предполагается в оригинальной системе Стройка—Тилбуга. Частным случаем \mathcal{F} -метрик, для которых выполняется условие (1), являются ранговая \mathcal{F} -метрика и \mathcal{F} -метрика Вандермонда. Симметричная криптосистема на ранговых кодах, позволяющая одновременно бороться с полной технической утечкой и с ранговыми помехами, построена в [4]. В работе построена симметричная кодовая криптосистема на основе кодов в \mathcal{F} -метрике Вандермонда. Вопрос о применении криптосистемы в \mathcal{F} -метрике Вандермонда для одновременной борьбы с технической утечкой и помехами в настоящее время исследуется.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Яковлев В. А.* Защита информации на основе кодового зашумления. СПб.: ВАС, 1993.
- Val Tilburg J. Security-Analisys of a Class of Cryptosystems Based on Linear Error-Correcting Codes. Eindhoven: PTT Research, 1994, p. 198.
- 3. *Габидулин Э. М.*, *Обернихин В. А.* Коды в *F*-метрике Вандермонда и их применение. Проблемы передачи информации, 2003, т. 39, № 2, с. 3–14.
- Косолапов Ю. В. Способ защиты информации от технической утечки, основанный на применении кодового зашумления и кодовых криптосистем. Автореферат диссертации на соискание ученой степени канд. техн. наук. Ростов-на-Дону: Ю-ФУ, 2009, 24 с.

5. Деундяк В. М., Косолапов Ю. В., Чекунов Е. С. О реализации и применении модификации Стройка—Тилбурга шифросистем типа Мак—Элиса. — В сб.: Материалы международного Российско-Абхазского симпозиума «Уравнения смешанного типа и родственные проблемы анализа и информатики». Нальчик, 2009, с. 75-77.