Е. Г. Гольштей н (Москва, ЦЭМИ РАН). Об одном необходимом и достаточном условии, которое обеспечивает монотонность отображения, связанного с конечной бескоалиционной игрой многих лиц.

Пусть X_i — подмножество евклидова пространства $\mathbf{E}_i, 1\leqslant i\leqslant k, f_i$ — функция, определенная на множестве X, являющемся декартовым произведением множеств $X_1,\ldots,X_k,\ \mathbf{E}=\mathbf{E}_1\times\cdots\times\mathbf{E}_k,\ k\geqslant 2$. Введем бескоалиционную игру Γ с числом игроков k, задаваемую для каждого игрока i множеством его стратегий X_i и функцией выигрышей f_i , определенной на X. Условимся обозначать X^* множество точек Нэша игры Γ . Игру Γ будем называть выпуклой, если X — непустой выпуклый компакт, функция $f_i, 1\leqslant i\leqslant k$, непрерывна на множестве $\{x=(x_1,\ldots,x_k):\ x_s\in X_s,\ 1\leqslant s\leqslant k,\ x_i\in \widetilde{X}_i\}$ и вогнута по $x_i\in \widetilde{X}_i$ при любых фиксированных $x_s\in X_s,\ 1\leqslant s\leqslant k,\ s\neq i$, где \widetilde{X}_i — открытое выпуклое множество, содержащее X_i . Свяжем с выпуклой игрой Γ точечно-множественное отображение T_Γ множества X в подмножества $\mathbf{E}\supset X$, определяемое соотношением

$$T_{\Gamma}(x) = \{ (t = (t_1, \dots, t_k) : -t_i \in \partial_{x_i} f_i(x), \ 1 \le i \le k \}, \quad x \in X,$$

где $\partial_{x_i} f_i(x)$ — супердифференциал функции f_i по x_i в точке x. Множество X^* точек Нэша игры Γ совпадает с множеством решений вариационного неравенства

$$t \in T(x), \quad \langle t, x' - x \rangle \geqslant 0 \quad \forall x' \in X$$

при $T=T_{\Gamma}$. В работе [1] описан достаточо эффективный численный метод решения вариационных неравенств. Сходимость этого метода при $T=T_{\Gamma}$ гарантируется, если Γ — выпуклая игра, а отображение T_{Γ} обладает свойством монотонности.

Рассмотрим конечную бескоалиционную игру с числом игроков $k \geqslant 2$, в которой игрок i располагает n_i стратегиями, а его функция выигрышей задается с помощью k-мерной таблицы $A_i = (a_{s_1 \dots s_k}^{(i)})_{n_1 \dots n_k}$, где $a_{s_1 \dots s_k}^{(i)}$ — выигрыш игрока i, если игрок α выбирает стратегию s_{α} , $1 \leqslant \alpha \leqslant k$. Расширяя множества стратегий игроков за счет смешанных стратегий, приходим к игре Γ , в которой

$$X_i = \left\{ x_i = (x_{i1}, \dots, x_{in_i}) : \sum_{j=1}^{n_i} x_{ij} = 1, \ 1 \leqslant j \leqslant n_i \right\},\,$$

$$f_i(x) = \sum_{s_1 \dots s_k} a_{s_1 \dots s_k}^{(i)} x_{1s_1} \dots x_{ks_k}, \quad 1 \leqslant i \leqslant k,$$

где $x=(x_1,\ldots,x_k)\in X=X_1\times\cdots\times X_k$. При k=2 игра Γ определяется двумя матрицами $A_i=(a^{(i)}_{s_1s_2})_{n_1n_2},\,i=1,2$. Игру Γ назовем почти матричной, если матрица $A=A_1+A_2=(a_{s_1s_2})_{n_1n_2}$ допускает представление $(a_{s_1s_2})_{n_1n_2}=(a'_{s_1}+a''_{s_2})_{n_1n_2}$. Для любой пары игроков $i,j,\,i< j,\,$ под s(i,j) условимся понимать набор стратегий s_λ , при $1\leqslant \lambda\leqslant k,\,\lambda\neq i,j$. Множество наборов стратегий s(i,j) обозначим s(i,j). С учетом введенных обозначений каждую из таблиц a_t можно записать в виде $a_t=(a^{(t)}_{s_is_js(i,j)})_{n_1\dots n_k}$. Для любых фиксированных $i< j,\,1\leqslant i,j\leqslant k$ и $s(i,j)\in S(i,j)$ игра Γ порождает игру $\Gamma_{ij}(s(i,j))$ двух лиц, определяемую матрицами $a_i(s(i,j))=(a^{(i)}_{s_is_js(i,j)})_{n_in_j}$ и $a_j(s(i,j))=(a^{(j)}_{s_is_js(i,j)})_{n_in_j}$.

Теорема. Отображение T_{Γ} , которое связано с конечной игрой Γ в смешанных стратегиях, является монотонным в том и только в том случае, если игра двух лиц $\Gamma_{ij}(s(i,j))$ является почти матричной при любых $i < j, \ 1 \leqslant i,j \leqslant k \ u \ s(i,j) \in S(i,j)$.

Работа выполнена при финансовой поддержке РФФИ, проект № 09–01–00156.

СПИСОК ЛИТЕРАТУРЫ

1. *Гольштейн Е. Г.* Метод решения вариационных неравенств, определяемых монотонными отображениями. — Ж. вычислит. матем. и матем. физики, 2002, т. 42, N2 7, с. 958–968.