А. С. Калитвин, В. А. Калитвин (Липецк, ЛГПУ). О математическом моделировании уравнениями Романовского некоторых задач марковских цепей.

Пусть даны непрерывная случайная переменная X со значениями на спрямляемой кривой $\mathcal L$ на плоскости или в трехмерном пространстве и бесконечный ряд опытов с этой переменной, пронумерованных числами $1,2,3,\ldots$. Опыты 1 и 2 образуют начальное звено $\mathbb N$ 0, опыты 2 и 3 образуют звено $\mathbb N$ 1 и т. д. Предполагается, что при естественной параметризации кривой длина ее произвольной дуги $(G,G+\Delta G)$ обозначается dG, а параметр изменяется на конечном отрезке. Пусть $p_0(A,B)\,dA\,dB$ — вероятность того, что X попадает в первом опыте на дугу $(A,A+\Delta A)$, а во втором опыте — на дугу $(B,B+\Delta B),\,p_k(A,B)$ — дифференциальный закон вероятностей того, что значения A и B переменной X попадут в звено $\mathbb N$ k, при условии, что результаты других опытов неизвестны, $p_k(A)$ — дифференциальный закон того, что X=A в k-м опыте, при условии, что результаты других опытов неизвестны. Если $p_0(A,B),\,p_k(A,B)$ и $p_k(A)$ — непрерывные функции, то будем говорить, что рассмотренные звенья образуют непрерывные функции, то будем говорить, что рассмотренные звенья образуют непрерывные друхсвязную цепь Маркова. Функции $p_k(A,B)$ и $p_k(A)$ удовлетворяют равенствам $\int_{\mathcal L} \int_{\mathcal L} p_k(A,B)\,dA\,dB = 1,\,\int_{\mathcal L} p_k(A)\,dA = 1$. В силу теоремы сложения вероятностей

$$p_{k}(A,B) = \int_{C} p_{k-1}(U,A)\varphi(U,A,B) \, dU, \quad p_{k}(A) = \int_{C} \int_{C} p_{k-3}(V,U)\varphi(A,V,U) \, dU \, dV, \quad (1)$$

где непрерывная на $\mathcal{L} \times \mathcal{L} \times \mathcal{L}$ функция $\varphi(U,A,B)$ — дифференциальный закон вероятностей того, что X=B в каком-нибудь опыте и известно, что в двух предшествующих опытах X=U и X=A. Полагая $p_k(A,B)=\lambda^k x(A,B)$, где λ — произвольная постоянная, получаем интегральное уравнение

$$\lambda x(A,B) = \int_{\mathcal{L}} \varphi(U,A,B) x(U,A) dU \equiv \Phi x(A,B). \tag{2}$$

Таким образом, задача марковских цепей, выраженная уравнениями (1), сводится к однородному интегральному уравнению (2), которое рассматривается вместе с неоднородным уравнением Романовского

$$\lambda x(A,B) = \Phi x(A,B) + f(A,B). \tag{3}$$

Аналогично, уравнения (1) и (2) являются математическими моделями двухсвязных цепей Маркова, в которых вместо спрямляемой кривой $\mathcal L$ рассматривается квадрируемая или кубируемая область $\mathcal L$. Во всех случаях свойства изучаемых двухсвязных цепей Маркова определяются свойствами решений уравнений (2) и (3).

Заметим, что уравнения (2) и (3) изучались В. И. Романовским в случае совпадения \mathcal{L} с отрезком [a,b] числовой оси и в предположении непрерывности заданных функций φ и f, а ряд опытов, связанных в цепь Маркова, играет важную роль в генетике, в некоторых вопросах математической физики и т. д. [1]. Интегральные уравнения типа Романовского изучались в [2].

Остановимся на некоторых свойствах уравнения (3). Обозначим \mathcal{C} пространство непрерывных на $\mathcal{L} \times \mathcal{L}$ функций, $C(L^1)$ — пространство непрерывных на $\mathcal{L} \times \mathcal{L}$ векторфункций со значениями в L^1 . Непрерывная на $\mathcal{L} \times \mathcal{L} \times \mathcal{L}$ функция $\varphi \in C(L^1)$, однако оператор Φ не является компактным в C. Поэтому интегральное уравнение (3) существенно отличается от интегральных уравнений Фредгольма с непрерывным ядром, основу теории которых составляют теоремы Фредгольма [3].

С применением методов, развитых в [2], доказывается, что при $\varphi \in C(L^1)$ оператор Φ^2 компактен в C. Так как Φ^2 — компактный оператор в C, то при $\lambda \neq 0$ оператор λI — Φ фредгольмов в C [3]. Тогда справедливо следующее утверждение.

Теорема. Если $\varphi \in C(L^1), \ \lambda \neq 0 \ u \ f \in C, \ mo \ для уравнения (3) имеют место теоремы Фредгольма.$

В условии теоремы уравнение (3) можно записать в виде $x=(1/\lambda)\Phi x+(1/\lambda)f$. Подставляя в правую часть этого уравнения вместо x выражение $(1/\lambda)\Phi x+(1/\lambda)f$, получим уравнение

$$\lambda^2 x = \Phi^2 x + \Phi f + \lambda f,\tag{4}$$

которое является обычным интегральным уравнением Фредгольма с компактным оператором Φ^2 . Поэтому для уравнения (4) справедливы теоремы Фредгольма.

Решения уравнения (3) являются решениями уравнения (4), а решение уравнения (4) может не быть решением уравнения (3) [2]. Следовательно, для решения уравнения (3) достаточно найти решения уравнения (4) и проверить, что найденные решения удовлетворяют уравнению (3). Таким образом, для исследования решений интегральных уравнений Романовского (3), моделирующих задачи двухсвязных цепей Маркова, могут быть использованы интегральные уравнения Фредгольма (4) с компактным интегральным оператором Φ^2 , теория и методы решения которых развиты достаточно полно.

В заключение отметим, что вид интегрального оператора Φ^2 определяется с применением теоремы Фубини.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Романовский В. И.* Избранные труды. Т. 2. Теория вероятностей, статистика и анализ. Ташкент: Наука, 1964, 390 с.
- 2. *Калитвин А. С.* Интегральные уравнения типа Романовского с частными интегралами. Липецк: ЛГПУ, 2007, 195 с.
- 3. Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: Наука, 1984, 752 с.