А. В. Тарасов (Москва, МИРЭА). **Об обобщении критерия биюнктивности Шефера.**

Пусть V_n — n-мерное пространство булевых векторов. В соответствии с [2] булеву функцию $f(x_1, x_2, \dots, x_n)$ будем называть:

1) биюнктивной, если существует представление f в виде 2-КНФ

$$f(x_1, x_2, \dots, x_n) = \bigwedge_{i=1}^{t} (x_{s_{i1}}^{a_{i1}} \vee x_{s_{i2}}^{a_{i2}});$$
(1)

2) слабо положительной, если существует представление f в виде КНФ

$$f(x_1, x_2, \dots, x_n) = \bigwedge_{i=1}^t (x_{s_{i1}}^{a_i} \vee x_{s_{i2}} \vee \dots \vee x_{s_{ir_i}});$$
 (2)

3) слабо отрицательной, если существует представление f в виде КНФ

$$f(x_1, x_2, \dots, x_n) = \bigwedge_{i=1}^{t} (x_{s_{i1}}^{a_i} \vee \overline{x}_{s_{i2}} \vee \dots \vee \overline{x}_{s_{ir_i}}).$$
 (3)

Множества всех функций соответственно классов 1)–3) обозначим Bi,WP,WN. Конъюнктивные нормальные формы вида (1)–(3) будем называть npusedennumu npedcmasenenumu функций соответствующих классов. Paneom элементарной дизъюнкции назовем число входящих в нее переменных. Подкласс класса WP, в приведенном представлении которых вида (2) имплиценты с отрицанием имеют ранг не более k, а остальные имплиценты — ранг не более r, обозначим $WP_{r,k}$. Аналогичный подкласс класса WN обозначим $WN_{r,k}$. Для всякой булевой функции $f(x_1, x_2, \ldots, x_n)$ определим множество $E_f = \{\alpha = (a_1, a_2, \ldots, a_n) : f(a_1, a_2, \ldots, a_n) = 1\}$, которое будем называть mhomeomedenumu векторов функции f. Пусть $r \geqslant 2, 1 \leqslant k \leqslant r$. Определим пороговую функцию $v_{r,k}$ по правилу

$$v_{r,k}(x_1,x-2,\dots,x_r) = \begin{cases} 1, & \text{если } x_1 + x_2 + \dots + x_r \geqslant k, \\ 0, & \text{если } x_1 + x_2 + \dots + x_r < k. \end{cases}$$

В частности, $v_{3,2}(x_1,x_2,x_3)=x_1x_2\vee x_2x_3\vee x_1x_3$. Легко видеть, что $v_{r,k}(x_1,x-2,\ldots,x_r)=\bigvee_{1\leqslant i_1< c_2<\cdots< i_r\leqslant r} x_{i_1}x_{i_2}\cdots x_{i_r}$.

Аналогичным образом определим функцию $w_{r,k}=v_{r,k}\oplus 1$. Данная функция может быть записана формулой $w_{r,k}(x_1,x_2,\ldots,x_r)=wedge_{1\leqslant i_1< i_2<\cdots< i_r\leqslant r}\overline{x}_{i_1}\overline{x}_{i_2}\cdots\overline{x}_{i_r}$.

Определим r-арные операции $v_{r,k}$ и $w_{r,k}$ на множестве V_n как операции покоординатного применения указанных функций к векторам из V_n . Пусть $N \subset V_n$, $r \geqslant 2$, $1 \leqslant k \leqslant r$. Множество N будем называть $v_{r,k}$ -замкнутым $(w_{r,k}$ -замкнутым), если для любых $\alpha_1,\alpha_2,\ldots,\alpha_r \in N, \ v_{r,k}(\alpha_1,\alpha_2,\ldots,\alpha_r) \in N \ (w_{r,k}(\alpha_1,\alpha_2,\ldots,\alpha_r) \in N)$. В работах [1,2] доказан критерий биюнктивности, который во введенных обозначениях можно сформулировать следующим образом.

Теорема 1. Булева функция $f(x_1, x_2, \ldots, x_n)$ биюнктивна тогда и только тогда, когда множество E_f является $v_{3,2}$ -замкнутым.

Пусть $r\geqslant 4,\ 2\leqslant k\leqslant \lfloor r/2\rfloor$. Положим $m=\lceil r/(k-1)\rceil-1$. Верна следующая теорема.

Теорема 2. Пусть $f(x_1,x_2,\ldots,x_n)$ — булева функция. Если $m\geqslant 3$ и множество E_f является $v_{r,k}$ -замкнутым, то $f\in WP_{m,2}$. При k=2 данное условие является достаточным, т. е. если $f(x_1,x_2,\ldots,x_n)\in WP_{r-1,2}$, то множество E_f является $v_{r,2}$ -замкнутым.

Заметим, в частности, что в случае m=3 из условия теоремы 2 следует, что $f\in WP_{m,2}\cap Bi.$

Результат, аналогичный результату теоремы 2, верен и для пороговой функции $w_{r,k}.$

Следствие. Если $m\geqslant 3$ и множество E_f является $w_{r,k}$ -замкнутым, то $f\in WN_{m,2}$. При k=2 данное условие является достаточным.

Резюмируя вышесказанное, можно сделать следующие выводы: при r=3, k=2 $v_{r,k}$ -замкнутость множества E_f эквивалентна биюнктивности функции f по критерию Шефера; при $r\geqslant 4, k=2$ $v_{r,k}$ -замкнутость множества E_f эквивалентна принадлежности функции f классу $WP_{r-1,2}$; при $r\geqslant 4, 3\leqslant k\leqslant \lfloor r/2\rfloor$ из $v_{r,k}$ -замкнутости множества следует принадлежность функции f классу $WP_{m,2}$, где $m=\lceil r/(k-)\rceil-1$.

СПИСОК ЛИТЕРАТУРЫ

- Schaefer T. Complexity of satisfiability problems. In: Proceedings of the 10 Annual ACM Symposium on theory of computing machinery, 1978, p. 216–226.
- 2. Γ оршков C. Π . О сложности распознавания мультиаффинности, биюнктивности, слабой положительности и слабой отрицательности булевых функций. Обозрение прикл. и промышл. матем., 1997, т. 4, в. 2, с. 216–237.