И.С. Соколова, **А.Н.Т** ы рсин (Челябинск, ЧелГУ, Екатеринбург, НИЦ «НиР БСМ» УрО РАН). Об энтропийно-вероятностном моделировании сложных систем.

Пусть сложная система рассматривается в виде случайного вектора $\mathbf{s} = (s_1, s_2, \dots, s_n)$ и \mathbf{s} имеет совместное нормальное распределение $\mathbf{s}_i \sim \mathbf{N}(m_{s_i}, \sigma_{s_i}^2), i = 1, 2, \dots, n$. Пусть для него известна корреляционная матрица \mathbf{R} , причем $0 \leq |\mathbf{R}| \leq 1$.

Энтропийно-вероятностное моделирование базируется на том, что наибольшего развития система достигает при максимально возможном значении ее энтропии.

Установлено, что энтропия системы $H(\mathbf{s})$ может быть выражена через энтропию ее элементов:

$$H(\mathbf{s}) = \sum_{i=1}^{n} H(s_i) + \frac{1}{2} \ln(|\mathbf{R}|), \tag{1}$$

где $H(s_i) = (1/) \ln(2\pi e \sigma_{s_i}^2)$.

Таким образом, энтропия сложной системы складывается из противоположных по знаку составляющих, которые характеризуют ее различные свойства. Величина $\sum_{i=1}^{n} H(s_i)$ определяет предельную энтропию, соответствующую полной независимости элементов системы. Значение $(1/2)\ln(|\mathbf{R}|)$ характеризует степень взаимосвязей между элементами системы. Следовательно, для адекватного моделирования сложной системы ее энтропия должна рассматриваться как двумерный вектор

$$H(\mathbf{s}) = (H_1(\mathbf{s}), H_2(\mathbf{s})) = \left(\sum_{i=1}^n H(s_i), \frac{1}{2}\ln(|\mathbf{R}|)\right).$$

Из (1) следует, что основным инструментом повышения энтропии является увеличение дисперсий подсистем путем введения в систему вектора независимых случайных величин $\mathbf{z}=(z_1,z_2,\ldots,z_n),\,z_i\sim\mathbf{N}(m_{z_i},\sigma_{z_i}^2),\,i=1,2,\ldots,n.$ При прибавлении к в вектора \mathbf{z} энтропия станет равной

$$H(s_1 + z_1, s_2 + z_2, \dots, s_n + z_n) = \sum_{i=1}^n H(s_i + z_i) + \frac{1}{2} \ln(|\mathbf{R}^*|),$$

где элементы матрицы ${f R}^*$ равны

$$r_{ij} = \frac{\cos(s_i, s_j)}{\sqrt{\sigma_{s_i}^2 + \sigma_{z_i}^2} \sqrt{\sigma_{s_j}^2 + \sigma_{z_j}^2}}, \quad i, j = 1, 2, \dots, n.$$

Система — это множество взаимосвязанных элементов, обособленное от среды и взаимодействующее с ней как целое. При ее моделировании важно учитывать взаимосвязанность ее элементов и, осуществляя управление, не разрушить системную основу. Следовательно, задача максимизации энтропии приобретает вид

$$H(s_1 + z_1, s_2 + z_2, \dots, s_n + z_n) \to \max, \qquad a \leqslant |\mathbf{R}^*| \leqslant b,$$
 (2)

где a и b — некоторые константы, отвечающие за сохранение системных свойств моделируемого объекта.

Решение задачи (2) обеспечит эффективное управление сложной системой.

Работа выполнена при финансовой поддержке РФФИ, проект № 10-01-96013-р Урал-а.