Ю. А. Самохин (Нижний Новгород, НГТУ). Асимптотическое интегрирование одной системы дифференциальных уравнений с колебательно убывающими коэффициентами и случайной частотой возмущения.

Рассматривается уравнение

$$\dot{x} = [A + \varepsilon B(\omega(\varepsilon, t)t) + \varepsilon t^{-1} D(\omega t)]x,\tag{1}$$

где $0<\varepsilon<1,$ $B(\omega(\varepsilon,t)t)=\sum_{l}B_{l}e^{i\omega_{l}(\varepsilon,t)t},$ B_{l} — заданные матричные коэффициенты, $x(t)=\operatorname{col}(x_{1}(t),x_{2}(t),\ldots,x_{n}(t))$ — вектор состояния системы (1), $x(t_{0})=x_{0}$ (t>0), $A=\operatorname{idiag}(\lambda_{1},\lambda_{2},\ldots,\lambda_{n}),$ $\operatorname{Im}\lambda_{k}=0$ для всех $k=1,2,\ldots,n,$ $t\in[t_{0},\infty).$

Случайный процесс $D(\omega t) \equiv (d_{ij}(t))$ обладает следующими свойствами. 1) Существует такая $c < \infty$, что $|d_{ij}(t)| \leqslant c$ для любого $t \geqslant t_0$. 2) Почти каждая реализация процесса $D(\omega t)$ — интегрируемая по Лебегу функция. 3) Математическое ожидание процесса $D(\omega,t)$ имеет вид $\overline{D(\omega t)} = \sum_{l \in L} D_l e^{i(\omega,l)t}$. Здесь $D_l = \text{const}$ для любого l, L — конечное множество m-мерных целочисленных векторов, $(\omega,l) = \sum_{s=1}^m \omega_s l_s$, ω — вектор частот параметрического возмущения. 4) Существует такое T > 0, что $\overline{D(\omega t_1)D(\omega,t_2)} = \overline{D(\omega t_1)}\overline{D(\omega,t_2)}$ при $|t_1-t_2| \geqslant T$. Введем вектор $X(t) = \text{col}\,(x_1(t)x_1^*(t),\ldots,x_1(t)x_n^*(t),x_2(t)x_1^*(t),\ldots,x_2(t)x_n^*(t),\ldots,x_n(t)x_1^*(t),\ldots,x_n(t)x_n^*(t))$.

Теорема. Пусть для системы (1) выполнены сформулированные выше условия. Тогда для моментов второго порядка вектора X(t) получаем обыкновенное дифференциальное уравнение с полиномиальными и колебательно убывающими коэффициентами

$$d\overline{X(t)}/dt = \left[\widetilde{A} + \varepsilon B(t) + \varepsilon t^{-1}\overline{D(t)}\right] \overline{X(t)}, \tag{2}$$

где спектр матрицы \widetilde{A} простой и состоит из чисел $i(\lambda_r-\lambda_s),\ r,s=1,2,\ldots,n$ [1], $B(t)=\sum_l B_l^1 e^{i\omega_l(\varepsilon,t)t},\ \overline{D(t)}=\sum_l D_l^1 e^{i(\omega,l)t},$ причем B_l^1 и D_l^1 — вполне определенные матричные коэффициенты [3].

Систему (2) ляпуновскими заменами [1, 2] приводим к виду

$$\dot{W} = \varepsilon D_1 + \varepsilon \left(\sum_{l} \widetilde{Q}_l B_l^1 \right) W + \varepsilon t^{-1} e^{\varepsilon D_2} \left(\sum_{l} \widehat{Q}_l D_l^1 \right) e^{-\varepsilon D_2} W + o(\varepsilon^2) W. \tag{3}$$

Здесь D_1 и D_2 — подходящим образом выбранные диагональные матрицы. В ряде случаев [1] в зависимости от свойств операторов \widetilde{Q}_l и \widehat{Q}_l можно сделать некоторые суждения об устойчивости (неустойчивости) решения уравнения (3) и, следовательно, (в среднеквадратичном смысле) и решения исходного уравнения (1) [1, 3].

СПИСОК ЛИТЕРАТУРЫ

- 1. Самохин Ю.А. Об асимптотическом интегрировании одного дифференциального уравнения с колебательно убывающими коэффициентами и случайной частотой возмущения. Обозрение прикл. и промышл. матем., 2010, т. 17, в. 2, с. 240–241.
- 2. *Фомин В. Н.* Математическая теория параметрического резонанса в линейных распределенных системах. Л: Изд-во Ленинградского ун-та, 1972.
- 3. Макаров А. П., Самохин Ю. А., Фомин В. Н. Исследование устойчивости параметрически возмущенных линейных стохастических систем с убывающими коэффициентами. Межвузовский сб.: Проблемы современной теории периодических движений. Ижевск: 1984, с. 17–22.