Д. С. С и м у ш к и н (Казань, $K\Phi(\Pi)Y$). Сравнительный анализ по объему наблюдений двух последовательных d-гарантийных процедур.

В эксперименте наблюдается последовательность независимых одинаково распределенных случайных величин ξ_1,ξ_2,\ldots,ξ_n с плотностью $f(x\mid\theta),\ x\in\mathcal{X},$ зависящей от вещественного параметра $\theta\in\mathbf{R}.$ Требуется выбрать одно из двух альтернативных утверждений $H_0:\theta\leqslant\theta_0$ или $H_1:\theta>\theta_0$ о значении параметра $\theta.$ Решение d_0 в пользу гипотезы H_0 или решение d_1 в пользу гипотезы H_1 принимаются по реализациям случайной выборки $\mathbf{x}^{(n)}=(x_1,x_2,\ldots,x_n)$ (возможно) случайного объема $\nu=n$ при помощи решающей функции $\delta=\delta(\mathbf{x}^{(n)}).$ Рассматривается класс последовательных процедур, удовлетворяющих заданным ограничениям β_0,β_1 на величины d-апостериорных рисков:

$$\mathbf{P}\{\theta > \theta_0 \mid \delta = d_0\} \leqslant \beta_0, \quad \mathbf{P}\{\theta \leqslant \theta_0 \mid \delta = d_1\} \leqslant \beta_1.$$

В докладе представлены результаты изучения характеристик двух вариантов последовательной процедуры, область продолжения наблюдения которой описывается неравенствами

$$\beta_1 < \mathbf{P}\{\vartheta \leqslant \theta_0 \mid \mathbf{x}^{(n)}\} < 1 - \beta_0.$$

При выходе за верхнюю границу принимается гипотеза H_0 , при выходе за нижнюю границу — гипотеза H_1 .

В первом варианте этой процедуры (так называемой универсальной d-гарантийной процедуре первого перескока, см. [1]) наблюдения продолжаются до тех пор, пока впервые не будут нарушены указанные неравенства. Как показывают результаты численного моделирования, эта процедура обладает бесконечным средним объемом наблюдений и поэтому не может претендовать на роль оптимальной процедуры, поскольку всегда существует d-гарантийная процедура, основанная на фиксированном числе наблюдений НОВ $n^* < \infty$.

Интересно, что процедура первого перескока совпадает с последовательным критерием отношения вероятностей (ПКОВ) с приближенными границам Вальда (см., например, [2], где также рассматриваются варианты ПКОВ для зависимых наблюдений), в которой плотность вектора наблюдений при гипотезе H_0 (H_1) равна $f(\mathbf{x}^{(n)} \mid \vartheta \leqslant_{(>)} \theta_0)$ — условной плотности при условии, что значение параметра удовлетворяют неравенству $\theta \leqslant \theta_0$ (> θ_0).

Теорема 1. Если «классические» вероятности ошибок 1-го и 2-го рода выбраны так, что соответствующие d-риски равны ограничениям β_0 , β_1 , то ПКОВ Вальда совпадает с процедурой первого перескока.

В отличие от классического подхода, в d-апостериорном подходе процедура Вальда автоматически гарантийна.

Во втором варианте последовательной процедуры эксперимент принудительно останавливается, как только число наблюдений станет равным НОВ n^* . Очевидно, d-риски такой усеченной процедуры будут больше номинальных значений β_0 , β_1 . Однако, как показывают результаты статистического моделирования, это превышение несущественно — при $\beta_0 = \beta_1 = 0,05$ фактические значения d-рисков не превышают величины 0,06, а при $\beta_0 = \beta_1 = 0,10$ — величины 0,106. В то же время выигрыш в числе наблюдений весьма значителен — средний объем выборки уменьшается (по сравнению с n^*) в 5–10 раз и, кроме того, такая процедура очень часто останавливается на первых двух шагах эксперимента.

Характеристики последовательных процедур исследуются в рамках следующих вероятностных моделей:

- 1) нормальное (θ, σ^2) распределение ξ и нормальное (μ, τ^2) распределение параметра $\vartheta;$
- 2) показательное распределение ξ и гамма-распределение параметра интенсивности $\vartheta.$

Теорема 2. Процедура первого перескока для вероятностных моделей $1),\ 2)$ останавливается с вероятностью единица.

СПИСОК ЛИТЕРАТУРЫ

- 1. Володин И. Н., Новиков А. А., Симушкин С. В. Гарантийный статистический контроль качества: апостериорный подход. Обозрение прикл. и промышл. матем., 1994, т. 1, в. 2, с. 1–32.
- 2. Ghosh B. K. Sequential Tests of Statistical Hypotheses. Reading, MA: Addison-Wesley, 1970.