В. Г. Ш а р а п о в (Волгоград, ВолГУ). Квазиэндоморфизмы, задаваемые непрерывными нигде не дифференцируемыми отображениями.

Обозначим M криволинейную трапецию: $M = \{(x,y) \colon 0 \leqslant x < 1, \ 0 \leqslant y < l(x)\},$ где $\int_0^1 l(x) \, dx = 1.$

Построим отображение отрезка $J=\{x\colon 0\leqslant x<1$ на M следующим образом. Разделим M на четыре криволинейные трапеции прямой x=1/2 и кривой y=l(x)/2. При этом считаем отрезки деления присоедин°нными к тем трапециям, от которых они расположены слева или снизу. Эти четыре множества назовем mpaneuusmu nepeoso nopsdка и обозначим $M_i^1,\ i=1,2,3,4$. Множество M_i^1 соответствует отрезку $A_{\alpha_1\alpha_2}$, где числа, имеющие в двоичной записи вид $0,\alpha_1\alpha_2\dots$, т. е. $\alpha_1\alpha_2$ в двоичной записи есть число i-1.

Аналогично разбиваем M_i^1 на четыре трапеции M_i^2 , $i=1,2,\ldots,16$; M_i^2 соответствует отрезку $A_{\alpha_1\alpha_2\alpha_3\alpha_4}$, $\alpha_1\alpha_2\alpha_3\alpha_4$ опять равно i-1. Нумерация трапеций второго порядка должна удовлетворять следующим условиям. 1) Нумерация трапеций должна быть согласована с нумерацией трапеций первого порядка, т.е. сначала перенумеровываются трапеции, входящие в M_1^1 , затем последовательно в M_2^1 , M_3^1 , M_4^1 . 2) Каждая трапеция M_i^2 , $i=1,2,\ldots,16$, имеет с трапециями M_{i-1}^2 и M_{i+1}^2 общую сторону или общую вершину. Далее аналогично по индукции строятся криволинейные трапеции n-го порядка с выполнением условий 1) и 2) для $n=3,4,\ldots$ В результате получается взаимнооднозначное, с точностью до меры нуль, отображение $\varphi\colon [0,1]\to M$, которое непрерывно (из-за свойства 2)), измеримо и не сохраняет меру.

Определим квазиэндоморфизм T множества M следующим образом. Положим прообразом множества M_i^1 i-й столбец множеств второго порядка. Например, $T^{-1}M_1^1=M_1^2\cup M_2^2\cup M_{10}^2\cup M_{11}^2$. Прообразом M_i^k являются i-е столбцы множеств (k+1)-го порядка. В пределе получаем $T^{-1}(x,y)=T^{-1}(\cap_{k=1}^\infty M_{i_k}^k(x,y))=\bigcap_{k=1}^\infty T^{-1}M_{i_k}^k(x,y)$, где $M_{i_k}^k(x,y)$ — трапеция k-го порядка, содержащая точку (x,y).

Так как прообразами $M_{i_k}^k(x,y)$ являются столбцы прообразов (k+1)-го порядка, то в результате прообразом точки (x,y) является вертикальный отрезок трапеции. Этим самым определяется квазиэндоморфизм T отрезка [0,1), который не сохраняет меру и является непрерывным нигде не дифференцируемым отображением.

Можно рассматривать вопрос о существовании инвариантной меры. Например, в качестве M возьмем настоящую трапецию, верхней стороной которой является прямая y = x/2 + 3/4, $0 \le x < 1$. Если сделать такое преобразование трапеции, что точка (x,y) переходит в (x,y/(x/2+3/4)), то квазиэндоморфизм T преобразуется в эндоморфизм T_1 , сохраняющий меру. Этот эндоморфизм является точным (см. [1]).

СПИСОК ЛИТЕРАТУРЫ

1. *Шарапов В. Г.* Эргодические свойства непрерывных нигде не дифференцируемых отображений. — Вестник ВолГУ, сер. матем., физ., 1996, в. 1, с. 50–54.