Π . А. Бакут, Ю. Π . Шумилов (Москва, ИПИР). Анализ эффективности методов тройной корреляции и внефокальных изображений при восстановлении изображений космических объектов.

В настоящее время остается актуальным вопрос оперативного и автоматизированного восстановления изображений космических объектов (КО), наблюдаемых через турбулентную атмосферу. С появлением высокопроизводительных вычислительных машин используется метод тройной корреляции (МТК) [1]. Пусть $I(\mathbf{r}) =$ $\int g(\mathbf{r}-\boldsymbol{\rho})O(\boldsymbol{\rho})\,d\boldsymbol{\rho}$ — коротко экспозиционное искаженное изображение в фокальной плоскости (\mathbf{r}) , где $O(\rho)$ — истинное изображение в плоскости (ρ) , $g(\mathbf{r})$ = $|\int A(\boldsymbol{\rho}) \exp\{(2\pi i/(\lambda l))\mathbf{r} \boldsymbol{\rho}_i \varphi(\boldsymbol{\rho})\} d\boldsymbol{\rho}|^2 T_{\text{эксп}}, \ \varphi(\boldsymbol{\rho},t)$ — фазовые флюктуации, $A(\boldsymbol{\rho})$ функция зрачка, $T_{
m skcn}$ — время экспозиции, λ — длина волны, l — расстояние от апертуры до плоскости изображения. Пространственно-частотная характеристика телескопа: $G(\mathbf{f}) = \int g(\mathbf{r})e^{-i\mathbf{r}\mathbf{f}}\,d\mathbf{r}$. Тройная корреляция (ТК) $I(\mathbf{r})$ определяется так: $T(\boldsymbol{\rho}_1,\boldsymbol{\rho}_2) = \int I(\mathbf{r})I(\mathbf{r}+\boldsymbol{\rho}_1)I(\mathbf{r}+\boldsymbol{\rho}_2)\,d\mathbf{r}$. Биспектр ТК равен $\int \int T(\boldsymbol{\rho}_1, \boldsymbol{\rho}_2) \exp\{-i\mathbf{f}_1\boldsymbol{\rho}_1 - \mathbf{f}_2\boldsymbol{\rho}_2\} = \widetilde{T}(\mathbf{f}_1, \mathbf{f}_2) = G(\mathbf{f}_1)G(\mathbf{f}_2)G^*(\mathbf{f}_1 + \mathbf{f}_2)O(\mathbf{f}_1)O(\mathbf{f}_2)O^*(\mathbf{f}_1 + \mathbf{f}_2)O(\mathbf{f}_$ ${f f}_2),$ где $O({f f})=\int O({m
ho})e^{-i{f f}{m
ho}}\,d{m
ho}$ — спектр истинного изображения. Накопленный биспектр будет равен $\widetilde{T}(\mathbf{f}_1, \mathbf{f}_2) = h(\mathbf{f}_1, \mathbf{f}_2) O(\mathbf{f}_1) O(\mathbf{f}_2) O^*(\mathbf{f}_1 + \mathbf{f}_2)$, где $h(\mathbf{f}_1, \mathbf{f}_2) =$ $G(\mathbf{f}_1)G(\mathbf{f}_2)G^*(\mathbf{f}_1+\mathbf{f}_2)$, усреднение производится по фазам. Отсюда получаем биспектр ТК изображения $O(\mathbf{f}_1)O(\mathbf{f}_2)O^*(\mathbf{f}_1+\mathbf{f}_2) = T(\mathbf{f}_1,\mathbf{f}_2)/h(\mathbf{f}_1,\mathbf{f}_2)$. Для гауссовской фазы с корреляционной функцией $\varphi(\boldsymbol{\rho}_1)\underline{\varphi(\boldsymbol{\rho}_2)} = \sigma_{\varphi}^2b(\boldsymbol{\rho}_1-\boldsymbol{\rho}_2),\,\sigma_{\varphi}^2$ —дисперсия флуктуаций фазы. Показано, что $h(\mathbf{f}_1, \mathbf{f}_2) = \overline{G(\mathbf{f}_1)} \overline{G(\mathbf{f}_2)} \overline{G^*(\mathbf{f}_1 + \mathbf{f}_2)}$. Тогда спектр неискаженного изображения ($\Phi(\mathbf{f}) = \arg O(\mathbf{f}), S_0$ — площадь проекции KO, D — диаметр апертуры, N — количество изображений, ρ_0 — центр тяжести площади проекции KO, * — знак сопряжения):

$$O^*(\mathbf{f}) = e^{i\Phi(\mathbf{0})} \left(1 - \frac{\lambda l}{\pi^2 D} |\mathbf{f}| - \frac{i\mathbf{f}\boldsymbol{\rho}_0}{S_0} \right)^{-1} \overline{G^*(\mathbf{f})} \left[\prod_{n=0}^{N-1} \frac{T(n\mathbf{f}/N, \mathbf{f}/N)}{T(n\mathbf{f}/N, -n\mathbf{f}/N)} \right],$$

по которому можно восстановить неискаженное изображение: $O(\mathbf{r}) = \int O^*(\mathbf{f}) e^{i\mathbf{r}\mathbf{f}} d\mathbf{r}$. Более прогрессивным для решения задач автоматизации восстановления изображений является метод внефокальных изображений (МВФИ) [2]. Пусть одновременно регистрируются три коротко экспозиционных изображения: в фокальной плоскости $I(\mathbf{r})$ и в двух плоскостях вблизи (на расстояниях z_1 и z_2 , Δz — мало) апертуры $I_1(\mathbf{r})$ и $I_2(\mathbf{r})$. Эти изображения оцифровываются и подставляются в уравнение [2]: $(\Delta z/k)\nabla'\varphi\nabla F(\mathbf{r}) = \Phi(\mathbf{r})$, решение которого — распределение фазовых искажений на апертуре $\varphi = \varphi(\mathbf{r})$; $F(\mathbf{r}) = (z_2/z_1)[I_1(\mathbf{r})/S_0 - 1] - (z_1/z_2)[I_2(\mathbf{r})/S_0 - 1]$, $\Phi(\mathbf{r}) = [(z_1 - z_2)/z_1][I_1(\mathbf{r})/S_0 - 1] + [(z_2 - z_1)/z_2][I_2(\mathbf{r})/S_0 - 1] - F^2(\mathbf{r})$. Восстанавливаются также фаза на контуре апертуры $\varphi(\tau)$. По восстановленной фазе формируется передаточная функция $h(\mathbf{r}|\varphi,\varphi(\tau))$ и пространственно-частотная характеристика $H(\mathbf{f}) = \int h(\mathbf{r}|\varphi,\varphi(\tau))e^{-i\mathbf{f}\mathbf{r}}d\mathbf{r}$, осуществляется Фурье-преобразование искаженного изображения $I(\mathbf{f}) = \int I(\mathbf{r})e^{-i\mathbf{r}}d\mathbf{r}$, восстанавливается спектр неискаженного изображения $O(\mathbf{f}) = l(\mathbf{f})/H(\mathbf{f}) + \varepsilon$, $\varepsilon = \text{const}$, и обратным преобразованием Фурье — неискаженное изображение $O(\rho) = [1/(2\pi)^2] \int O(\mathbf{f})e^{i\mathbf{f}\rho}d\mathbf{f}$.

Ключевое отличие МТК от МВФИ: в МВФИ фаза восстанавливается непосредственно уже по одному кадру, в МТК искажающая фаза в биспектре ТК усредняется по мере накопления, обращаясь в нуль. Моделирование и реализация МТК на натурных снимках показали следующее. 1. Качественное восстановление наступает, когда регистрируют более 1000 кадров. 2. За время регистрации изменяется ракурс, режим стабилизации и т. д. и могут быть получены кадры, отличающиеся по содержанию, что исключает восстановление и распознавание в автоматическом режиме. 3. Режим накопления занимает значительное время, что не позволяет говорить об обработке в реальном времени. 4. Восстанавливать и распознавать, особенно в автоматиче-

ском режиме, нужны изображения с информацией о его структуре, а не информацию, характерную для обнаружения и селекции, т. е. это должно быть достаточно разрешаемое и яркое изображение.

МВФИ (с учетом п. 4) лишен недостатков МТК и поэтому более эффективен.

СПИСОК ЛИТЕРАТУРЫ

- 1. Lohmann A. W., Weigelt G., Wimitzer B. Speckle masking in astronomy: triple correlation theory and applications. Applied Optics, 1983, v. 22, № 24, p. 4028–4037.
- Shumilov Y.P., Bakut P.A., Ershova O.M. Amplitude-phase distortions by extrafocal images. — SPIE, 2001, v. 4493.