В. Б. Гисин (Москва, Финансовый ун-т). Выпуклые нечеткие подгруппы аддитивной группы вещественных чисел.

Пусть A — аддитивная группа. В соответствии с принципом обобщения Заде нечеткое подмножество H группы A с функцией принадлежности $\mu_H: A \to I$, I = [0,1], называется нечеткой подгруппой, если выполняются следующие условия: (i) $\mu_H(0) = 1$; (ii) $\mu_H(x+y) \geqslant \min \{\mu_H(x), \mu_H(y)\}$ для любых $x,y \in A$; (iii) $\mu_H(-x) = \mu_H(x)$ для любого $x \in A$ (см. [1]). Если нечеткость имеет вероятностную природу, операция min в этом определении может быть заменена произвольной T-нормой * (бинарной операцией, превращающей I в упорядоченную полугруппу с нулем и единицей). В этом случае условие (ii) приобретает следующий вид: (ii*) $\mu_H(x+y) \geqslant \mu_H(x) * \mu_H(y)$. Нечеткая подгруппа аддитивной группы вещественных чисел \mathbf{R} называется выпуклой, если $\mu_H(y) \leqslant \mu_H(x)$ при $0 \leqslant x \leqslant y$.

Нечеткая подгруппа H порождает на ${\bf R}$ нечеткое отношение эквивалентности E с функцией принадлежности $\mu_E(x,y)=\mu_H(x-y),$ являющееся конгруэнцией (т. е. такое, что $\mu_E(x,y)**\mu_E(x',y')\leqslant \mu_E(x+x',y+y')).$ Обратно, нечеткая конгруэнция E определяет нечеткую подгруппу с функцией принадлежности $\mu(x)=\mu_E(x,0).$ Смежные классы вещественных чисел по нечеткой подгруппе H — это нечеткие числа с функциями принадлежности вида $\mu_H(x-a), a\in {\bf R}.$ Нетрудно заметить, что в полугруппе нечетких чисел с sup-*-сложением нечеткие подгруппы являются идемпотентными элементами [2], [3]. Положительные сдвиги нечеткой выпуклой подгруппы аддитивной группы вещественных чисел порождают положительный конус относительно нечеткого упорядочения. Обратно, всякая нечеткая подгруппа является пересечением положительного и отрицательного конуса в некотором нечетком упорядочении [4].

Пусть на некотором множестве Ω задана вещественная функция (измерение) f. Элементы $u,v\in\Omega$ считаются неразличимыми (будем писать $u\approx v$), если $|f(u)-f(v)|<\xi$, где ξ — случайная величина, принимающая положительные значения. Будем считать, что случайные величины ξ непрерывны и имеют одинаковые распределения для всех пар $u,v\in\Omega$. Обозначим F(x) функцию распределения. Говорят, что отношение \approx слабо транзитивно, если $\mathbf{P}\{u\approx v,v\approx w\}\leqslant\mathbf{P}\{u\approx w\}$ для любых $u,v,w\in\Omega$.

Пусть C — такая копула, что C(F(x),F(y)) — совместное распределение случайных величин ξ для различных пар $u,v\in\Omega$. Бинарную операцию, задаваемую на интервале I ассоциированной копулой доживания, обозначим * (см. [5]). Будем предполагать, что * — архимедова T-норма.

Теорема. Если q(t)=1-F(|t|) является функций принадлежности нечеткой подгруппы в ${\bf R}$ относительно *, то отношение \approx слабо транзитивно.

В работе, представленной данным докладом, устанавливается, при каких значениях параметров условия теоремы выполняются для употребительных семейств распределений и T-норм. Например, для бета-распределений с функцией плотности

$$\frac{1}{B(r,s)}x^{r-1}(1-x)^{s-1}$$

и T-норм, порожденных аддитивными генераторами вида $(1-x)^a$, условия теоремы выполняются тогда и только тогда, когда $r+s\geqslant 2,\ a\ (r+s)\geqslant 2,\ ar\leqslant 1.$

СПИСОК ЛИТЕРАТУРЫ

- 1. Mordeson J. N., Bhutani K. R., Rosenfeld A. Fuzzy Group Theory. Berlin etc.: Springer, 2005.
- 2. De Baets B., Mares M., Mesiar R. T-partitions of the real line generated by idempotent shapes. Fuzzy Sets and Systems, 1997, v. 91, № 2, p. 177–184.

- 3. Gisin V. B. Fuzzy orderings of real numbers. In: Towards a Unified Fuzzy Sets Theory. 2nd Joint IFSA-EC and Euro-WG Workshop on Fuzzy Sets, Visegrad, Hungary, 1990, p. 39–40.
- 4. Gisin V. B. Fuzzy positive cones of real numbers. Proceedings of the 2nd european Cogress on Intelligence Techniques and Soft Computing (EUFIT 94). Aachen, September 20–23, Aachen: Verlag Mainz, 1996./ Ed. by H. J. Zimmerman. V. 2. 1994, p. 979–983.
- 5. Nelsen R. B. An Introduction to Copulas, NY. etc.: Springer, 2006.