Π . А. Лужецкая, Γ . Н. Кондратьева (Ростов-на-Дону, РГСУ). Алгоритм конкатенации процессов Леви для построения неоднородных моделей.

Процессы Леви [2] непосредственно непригодны для построения моделей в случаях, когда приращения процесса либо зависимы, либо неоднородны. Например, для потока заявок или трафика характерна зависимость интенсивности от времени. В докладе рассматривается модификация процесса Леви, предназначенная для моделирования неоднородности, возникающей в реальности. Предлагаемый метод назван конкатенацией процессов Леви.

Рассмотрим автомат без входов $SA = \langle p_0, S, M, P, \varphi \rangle$, где p_0 — начальное распределение вероятностей на S, S — конечное множество состояний, P — стохастическая матрица переходов, $M = \{1, 2, \dots, N\}$ есть конечный выходной алфавит, $\varphi \colon S \to M$ есть сюръективное отображение. Каждый элемент множества M является меткой модели. Данный автомат является генератором марковских цепочек [1]. Длина такта стохастического автомата $\tau \in \{1, 2, \dots\}$ является случайной величиной с известным законом распределения Q.

Рассмотрим семейство процессов Леви $X^{(j)},\ j=1,2,\ldots,N,$ и семейство приращений случайного процесса $\varepsilon_i^{(j)}=X_{ih}^{(j)}-X_{(i-1)h}^{(j)}.$ Пусть вероятностный автомат генерирует выходную последовательность $\{u_1,u_2,\ldots,u_l\},$ используя эту последовательность, получим временной ряд приращений конкатенацией отрезков приращений временных рядов $E=E^{(u_1)}E^{(u_2)}\cdots E^{(u_l)}.$ Отрезки имеют длину, равную длине такта τ_l стохастического автомата.

Процесс приращений рассматриваемого процесса может быть получен в результате применения алгоритма (процедуры) $Con(F,\Phi,N,SA,\tau,\varepsilon)$. 1) k:=1. 2) Генерация τ при помощи Φ . 3) Генерация u при помощи стохастического автомата. 4) n:=1. 5) Генерация $\varepsilon(k)$ при помощи $F^{(u)}$. 6) n:=n+1, k:=k+1. 7) Если k>N, то к 10. 8) Если $n\leqslant \tau$, то к 5. 9) Перейти к 2. 10) Возврат.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дынкин Е. Б. Марковские процессы. М.: Физматгиз, 1963, 860 с.
- 2. Applebaum D. Lévy Processes and Stochastic Calculus. Cambrige: Cambridge University Press, 2004, 408 p.