ОБОЗРЕНИЕ прикладной и промышленной Том 19 МАТЕМАТИКИ Выпуск 4 2012

П. С. Серебренников (Мытищи, МГУЛ). Фототок, обусловленный диффузией горячих фотодырок.

Для определения таких важнейших характеристик ИК приемников, как квантовая эффективность и фоточувствительность, необходимо рассмотреть диффузионное движение горячих фотодырок к границе гетероперехода $Si_{1-x}Ge_x/Si$. Фотодырки с большой энергией после поглощения ИК фотона испускают оптические фононы, после чего они не могут преодолеть потенциальный барьер на границе гетероперехода и не дают вклад в ток через гетеропереход. Концентрация фотодырок подчиняется уравнению

$$D_p \frac{d^2}{dx^2} \Delta p - \frac{\Delta p}{\tau_e} = g.$$

Здесь D_p — коэффициент диффузии горячих дырок, τ_e — время пробега горячих дырок относительно испускания оптических фононов, g — скорость генерации горячих дырок ИК излучением. Скорость генерации записывается в виде $g = s_0 \alpha e^{-\alpha x}$ при падении излучения через подложку и $g = s_0 \alpha e^{\alpha(x-L)}$ при прямом падении излучения на область $Si_{1-x}Ge_x$ (α — коэффициент поглощения излучения, s_0 — плотность излучения на границе, x = 0 — гетерограница, L — длина области $Si_{1-x}Ge_x$).

Граничные условия на $\Delta p(x)$: $\Delta p(0) = 0$ (горячие дырки, достигшие гетерограницу, уходят в Si) и $\Delta'(L) = 0$ (горячие дырки отражаются от границы области $Si_{1-x}Ge_x$ и поэтому поток на границу области равен 0). Уравнение для функции Грина (функции влияния точечного источника) имеет вид

$$\left(D_p \frac{d^2}{dx^2} - \frac{1}{\tau_e}\right) G(x, x') = \delta(x - x').$$

Граничные условия для функции Грина равны соответственно $G(x,x')|_{x=0} = 0$, $G'(x,x')|_{x=L} = 0$. С учетом приведенных граничных условий и принимая во внимание равенство $D_p G'(x,x')|_{x'=0}^{x'+0} = 1$, получаем функцию Грина

$$G(x,x') = -\sqrt{\frac{\tau_e}{D_p}} \frac{\operatorname{ch} \chi(x'-L)}{\operatorname{ch} \chi L} \bigg[\theta(x'-x) \operatorname{sh} \chi x + \theta(x-x') \frac{\operatorname{sh} \chi x' \operatorname{ch} \chi(x-L)}{\operatorname{ch} \chi(x'-L)} \bigg].$$

Здесь sh, ch — гиперболические синус и косинус
, $\,\chi=1/\sqrt{D_p\tau_e}$.

Плотность горячих дырок и их поток через гетерограницу выражаются через функцию Грина $\Delta p(x) = \int_0^L G(x, x')g(x') dx'$, $I_p = -D_p (d\Delta p(x)/dx)|_{x=0}$. С помощью найденной функции Грина получаем вероятность поглощения фотона с энергией, большей пороговой энергии, и достижения горячей дырки гетерограницы в виде $W_1 = \alpha(\operatorname{ch} \chi L)^{-1} \int_0^L \operatorname{ch} \chi(x' - L) e^{-\alpha x'} dx'$.

Эта вероятность написана для случая падения излучения через подложку. Соответствующая вероятность при прямом падении будет $W_2 = \alpha (\operatorname{ch} \chi L)^{-1} \int_0^L \operatorname{ch} \chi(x' - L) e^{\alpha (x'-L)} dx'.$

[©] Редакция журнала «ОПиПМ», 2012 г.

До сих пор считалось, что на границе области $Si_{1-x}Ge_x$ горячие дырки зеркально отражаются. Это является наиболее благоприятным случаем. Худшим случаем будет термализация горячих дырок на границе области $Si_{1-x}Ge_x$, когда горячая дырка испускает оптический фонон на границе, теряет свою энергию и не дает вклада в фототок, т.к. не может преодолеть потенциальный барьер на гетерогранице. Этот случай отвечает граничному условию $\Delta p(L) = 0$ ($G(x, x')|_{x=L} = 0$). Решаем опять дифференциальное уравнение для функции Грина для этих граничных условий ($G(x, x')|_{x=0} = G(x, x')|_{x=L} = 0$). По найденной функции Грина находим вероятность поглощения фотона с энергией, большей пороговой энергии, и достижения горячей дырки гетерограницы для случая падения излучения через подложку $W_3 = (\alpha/(\operatorname{sh} \chi L)) \int_0^L \operatorname{sh} \chi(L - x') e^{-\alpha x'} dx'$ и при прямом падении $W_4 = (\alpha/(\operatorname{sh} \chi L)) \int_0^L \operatorname{sh} \chi(L - x') e^{\alpha(x'-L)} dx'$.

В таблице представлены некоторые результаты расчетов функции $W_i(L)$ для двух значений коэффициентов поглощения излучения $\alpha = 10^4$ cm⁻¹ и $\alpha = 2 \cdot 10^5$ cm⁻¹ (соответствующие вероятности имеют дополнительные индексы 1 и 2 соответственно), длина пробега горячей дырки относительно испускания оптического фонона $l_e = \sqrt{D_p \tau_e}$ принята равной $l_e = 10$ нм. Видна зависимость $W_i(L)$, и, следовательно, квантовой эффективности и фоточувствительности от коэффициента поглощения излучения, длины области $Si_{1-x}Ge_x$ и способа введения излучения.

	10нм	15нм	20нм	25нм	30нм	35нм	40нм
$W_{11} \cdot 10^3$	7,58	8,00	9,57	9,78	9,86	9,89	9,9
W_{12}	0,14	0,16	0,167	0,168	0,168	0,168	0,167
$W_{21} \cdot 10^3$	7,57	8,97	9,52	9,7	9,75	9,73	$9,\!69$
W_{22}	0,137	0,153	0,151	0,143	0,132	0,121	0,111
$W_{31} \cdot 10^3$	4,6	6,32	7,57	8,42	8,98	9,33	9,556
W_{32}	0,087	0,116	0,136	$0,\!15$	0,154	0,161	0,163
$W_{41} \cdot 10^3$	4,6	6,29	7,5	8,33	8,85	9,17	9,34
W_{42}	0,08	0,104	0,115	$0,\!12$	0,117	$0,\!112$	0,105