ОБОЗРЕНИЕ

ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ Том 19 МАТЕМАТИКИ Вь

2

Выпуск 5

2012

Б. М. Γ у р е в и ч, В. С. Π о п о в (Москва, МГУ, ИППИ РАН). Устойчиво положительные функции на пространстве путей бесконечного графа.

Пусть G = (V, E) — счетный ориентированный граф (в дальнейшем — просто граф),

$$X(G) = \{x = (x_i)_{i \in \mathbf{Z}^+} : x_i \in V, (x_i, x_{i+1}) \in E, i \in \mathbf{Z}^+ \}$$

— множество его бесконечных путей, $T:X(G)\to X(G)$ — сдвиг на шаг влево ($(Tx)_i=x_{i+1}$, $i\in \mathbf{Z}^+$) и $f:X(G)\to \mathbf{R}$ есть функция с суммируемыми вариациями: $\sum_{n=2}^\infty \mathrm{var}_n(f)<\infty$, где $\mathrm{var}_n(f)=\sup\{|f(x)-f(x')|:x_i=x_i'$ при $0\leqslant i\leqslant n\}$. Введем множество периодических точек $\mathrm{Fix}_n(T,G)=\{x\in X(G):T^nx=x\}$ и для каждого множества $C(v)=\{x\in X(G):x_0=v\}$, $v\in V$, зададим последовательность чисел

$$Z_n(G, f, v) = \sum_{x \in C(v) \cap \operatorname{Fix}_n(T, G)} \exp \sum_{k=0}^{n-1} f(T^k x), \quad n \geqslant 1.$$

Положим также $C(v,n)=\{x\in C(v): T^kx\notin C(v)$ при $0\leqslant k\leqslant n-1\}$ и

$$Z_n^0(G, f, v) = \sum_{x \in C(v, n) \cap \text{Fix}_n(T, G)} \exp \sum_{k=0}^{n-1} f(T^k x), \quad n \geqslant 1.$$

Радиусы сходимости степенных рядов

$$\varphi_v(z) = \sum_{n=1}^{\infty} Z_n(G, f, v) z^n, \quad \varphi_v^0(z) = \sum_{n=1}^{\infty} Z_n^0(G, f, v) z^n$$

обозначим через R(G,f,v) и $R^0(G,f,v)$ соответственно. Если граф G связен, что и будет предполагаться, то R(G,f,v) не зависит от v , т.е. R(G,f,v)=R(G,f) .

О п р е д е л е н и е (ср. [1]) Функция e^f называется устойчиво положительной (УП) (иногда — устойчиво возвратной), если $R(G,f) < R^0(G,f,v)$ хотя бы для одной (а тогда и для всех) вершин $v \in V$.

Если f(x) зависит лишь от x_0 и x_1 , то функцию e^f можно рассматривать как неотрицательную матрицу (ее элементы, отвечающие парам $(v,v') \notin E$, считаются нулевыми), а если к тому же эта матрица стохастическая, то в случае УП функции f соответствующая цепь Маркова положительна (и сохраняет это свойство при малом возмущении f). Поэтому можно говорить об УП матрицах.

Среди бесконечных неотрицательных матриц УП матрицы по своим свойствам наиболее близки к конечным. В [2] приведен ряд важных свойств УП матриц. Одно из них можно назвать свойством компактности, оно полностью характеризует УП матрицы. Часть этих результатов удалось распространить на УП функции более общего вида.

СПИСОК ЛИТЕРАТУРЫ

- 1. Γ уревич Б. М., Поляков А. Б. Устойчиво возвратные функции на пространстве путей счетного графа. Успехи матем. наук, 1999, т. 54, в. 6, с. 157–158.
- 2. *Гуревич Б. М., Савченко С. В.* Термодинамический формализм для счетных символических цепей Маркова. Успехи матем. наук, 1998, т. 53, в. 2, с. 3–106.