ОБОЗРЕНИЕ

ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ Том 19 МАТЕМАТИКИ Вы

2012

Выпуск 5

Д. М. Ермилов (Москва, ТВП). О поиске цикловой структуры полиномиальных преобразований колец Галуа.

Рассмотрим биективное полиномиальное преобразование задающиеся полиномом F(x) над кольцом Галуа $R=\mathrm{GR}\,(q^n,p^n)$. *Цикловой структурой полиномиального преобразования* F(x) называют таблицу $[l_1^{k_1},l_2^{k_2},\ldots,l_t^{k_t}]$, указывающую, что подстановка, которая задается полиномиальным преобразованием F(x), состоит из k_1 циклов длины l_1 , ..., k_t циклов длины l_t .

Предлагаемый алгоритм позволяет находить цикловую структуру F(x) над кольцом Галуа R не более, чем за $O\left(q^3n^2\right)$ вычислений значения F(x) в точке.

Нахождение цикловой структуры с низкой трудоемкостью открывает путь к разработке методов построения подстановок над кольцами Галуа с заданной цикловой структурой.

Пусть J — радикал кольца R. Каждому полиному F(x) поставим в соответствие граф этого полиномиального преобразования G_F и рассмотрим произвольный цикл C графа G_F . Обозначим t_n длину цикла C. Если привести этот цикл по модулю J^s , то получим цикл длины t_s , $s \in \{1,2,\ldots,n-1\}$. Следующие теоремы устанавливают взаимосвязь между величинами t_1,t_2,\ldots,t_n при различных p. Пусть $d_i=t_{i+1}/t_i$, $i=1,2,\ldots,n-1$.

Теорема 1. Пусть $F(x) \in R[x]$. Последовательность $d_1, d_2, \ldots, d_{n-1}$ для произвольного цикла C графа G_F при $p \neq 2$ может иметь вид: a) $1, 1, \ldots, 1;$ b) $1, 1, \ldots, 1, p, \ldots, p;$ c) $1, 1, \ldots, \delta, 1, \ldots, 1;$ d) $1, 1, \ldots, \delta, 1, \ldots, 1, p, \ldots, p,$ где δ — некоторый параметр полинома F(x).

В случае, когда характеристика кольца R четна, описание последовательности d_1,\dots,d_{n-1} дает следующее утверждение.

Теорема 2. Пусть $F(x)\in R[x]$. Последовательность d_1,d_2,\ldots,d_{n-1} для произвольного цикла C графа G_F при p=2 может иметь вид: a) $1,1,\ldots,1;$ b) $1,1,\ldots,1,2,\ldots,2;$ c) $1,1,\ldots,\delta;$ d) $1,1,\ldots,\delta,1,\ldots,1;$ f) $1,1,\ldots,\delta,1,\ldots,1,2;$ g) $1,1,\ldots,1,\delta,1,\ldots,1,2,e_1,e_2,\ldots,e_l,$ где $e_i\in\{1,2\},$ $i=0,1,\ldots,l$ и δ — некоторый параметр полинома F(x).

С помощью результатов приведенных теорем можно дать ответ на вопрос: циклы какой длины могут быть сравнимы с заданным циклом C графа G_F ? Ответим на вопрос о количестве циклов, сравнимых с заданным циклом C графа G_F по произвольному модулю J^k , $k \in \{1, 2, \ldots, n\}$.

Выберем и зафиксируем $s\in\{1,2,\ldots,n\}$. Рассмотрим эпиморфизм ϕ_s : $R/J^{s+1}\to R/J^s$. Пусть цикл C имеет длину t по модулю J^s . Назовем множество $\phi_s^{-1}(C)$ полным прообразом цикла C относительно ϕ_s .

Теорема 3. Пусть цикл C имеет длину t по модулю J^s . Тогда:

1) если в полном прообразе $\phi_s^{-1}(C)$ содержится цикл длины dt, где d|q-1, то полный прообраз цикла C относительно ϕ_s состоит из одного цикла длины t и (q-1)/d циклов длины dt;

[©] Редакция журнала «ОПиПМ», 2012 г.

- 2) если в полном прообразе $\phi_s^{-1}(C)$ содержится цикл длины pt, то полный прообраз цикла C относительно ϕ_s состоит из q/p циклов длины pt; 3) если в полном прообразе $\phi_s^{-1}(C)$ содержится более двух циклов длины t, то
- полный прообраз цикла C относительно ϕ_s состоит из q циклов длины t.

Полученные теоретические результаты позволили предложить алгоритм поиска цикловой структуры. На первом шаге алгоритма находится цикловая структура полиномиального преобразования F(x) над полем R/J. Далее для каждого цикла C из найденной цикловой структуры выполняется поиск циклов графа G_F , которые сравнимы с циклом C по модулю J. Это делается с помощью построения цепочки множеств циклов, сравнимых с циклом C по модулям J, J^2, \ldots, J^n соответственно. Последнее множество из полученной цепочки содержит циклы искомой цикловой структуры.

Используя результаты изложенных теорем, удалось показать возможность построения упомянутой выше цепочки множеств циклов с низкой трудоемкостью и оценить общую сложность алгоритма величиной $O(q^3n^2)$.

Алгоритм допускает эффективное распараллеливание. При использовании $\,m\,$ процессоров сложность алгоритма оценивается величиной $O(q^3n^2/m)$.

Работа выполнена при поддержке гранта Президента РФ НШ-8.2010.10

СПИСОК ЛИТЕРАТУРЫ

- 1. Анашин В. С. О группах и кольцах, обладающих транзитивными полиномами. В сб.: Тезисы XVI-й Всесоюзной алгебраической конференции. Часть II. Ленинград: 1981, c. 4-5.
- 2. Елизаров В. П. Конечные кольца. М.: Гелиос-АРВ, 2006.
- Ларин М. В. Транзитивные полиномиальные преобразования колец вычетов. -Дискретн. матем., 2002, т. 14, в. 2, с. 20–32.