ОБОЗРЕНИЕ

ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ Том 20 МАТЕМАТИКИ Выпуск 3

2013

Н. П. Φ о к и н а, И. Е. Т а н а н к о (Саратов, СГУ). О методе управления маршрутными матрицами сетей массового обслуживания с переменной топологией.

Пусть N — замкнутая экспоненциальная сеть массового обслуживания с L системами массового обслуживания $S_i,\ i=1,2,\ldots,L$, типа M|M|1 с интенсивностями обслуживания μ_i , Q требованиями одного класса, матрицей смежности $W=(w_{ij}),\ i,j=1,2,\ldots,L$, ориентированного графа, определяющих топологию сети N . Предполагается, что матрица W принимает значения из множества $\{W(k)\},\ k=1,2,\ldots,K$, где $W(k)=(w_{ij}(k)),\ i,j=1,2,\ldots,L$. Обозначим N(k) сеть N с топологией W=W(k). Эволюция сети N представляет собой случайную последовательность эволюций сетей N(k), фиксированных длительностей $\tau_k,\ k=1,2,\ldots,K$, соответственно.

Функционирование сети N можно рассматривать как два протекающих одновременно процесса: 1) процесс смены топологий сети и 2) вложенный в него процесс обслуживания и переходов требований между системами сети обслуживания.

Предполагается, что очередное изменение топологии в сети N мгновенно приводит в действие механизм формирования и реализации в этой сети маршрутной матрицы, обеспечивающей равенство математических ожиданий длительностей пребывания требований \overline{u} во всех системах обслуживания.

Для сети N предлагается метод оптимального управления маршрутными матрицами, который предполагает сначала нахождение векторов относительных интенсивностей потоков требований ω , обеспечивающих равенство \overline{u} во всех системах сетей $N(k), \quad k=1,2,\ldots,K$. Затем для каждой сети N(k) с заданным вектором ω формируется соответствующая маршрутная матрица $\Theta(k)$.

Метод синтеза вектора ω , обеспечивающего приближенное равенство \overline{u} во всех системах сети, рассмотрен в работе [1]. Получена также система нелинейных уравнений относительно неизвестных ω_i , $i=1,2,\ldots,L$, которая может быть решена численно. Маршрутная матрица $\Theta(k),\ k=1,2,\ldots,K$, для заданного вектора ω может быть построена с использованием метода формирования маршрутных матриц, рассмотренного в работе [2].

Предложенный метод оптимального управления маршрутными матрицами обеспечивает неизменность требуемых значений характеристик сети обслуживания с изменяемой топологией.

СПИСОК ЛИТЕРАТУРЫ

- 1. Митрофанов Ю. И. Синтез сетей массового обслуживания. Саратов: Изд-во Саратовского ун-та, 1995.
- Тананко И. Е. Метод оптимизации маршрутных матриц открытых сетей массового обслуживания. — Автомат. вычисл. техн., 2002, № 4, с. 39–46.

[©] Редакция журнала «ОПиПМ», 2013 г.